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Critical Dynamics in Thin Films
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Critical dynamics in film geometry is analyzed within the field-theoretical approach. In
particular we consider the case of purely relaxational dynamics (Model A) and Dirichlet
boundary conditions, corresponding to the so-called ordinary surface universality class
on both confining boundaries. The general scaling properties for the linear response and
correlation functions and for dynamic Casimir forces are discussed. Within the Gaussian
approximation we determine the analytic expressions for the associated universal scaling
functions and study quantitatively in detail their qualitative features as well as their
various limiting behaviors close to the bulk critical point. In addition we consider
the effects of time-dependent fields on the fluctuation-induced dynamic Casimir force
and determine analytically the corresponding universal scaling functions and their
asymptotic behaviors for two specific instances of instantaneous perturbations. The
universal aspects of nonlinear relaxation from an initially ordered state are also discussed
emphasizing the different crossovers that occurring during this evolution. The model
considered is relevant to the critical dynamics of actual uniaxial ferromagnetic films
with symmetry-preserving conditions at the confining surfaces and for Monte Carlo
simulations of spin system with Glauber dynamics and free boundary conditions.

KEY WORDS: Dynamic critical phenomena, confined geometry, finite-size scaling,
magnetic properties of films, critical casimir force

1. INTRODUCTION

The microscopic understanding of collective dynamic phenomena in condensed
matter poses one of the most difficult challenges for statistical physics. Accord-
ingly the theory of these phenomena is in a significantly less mature state than
for static properties in thermal equilibrium; also the corresponding experimental
knowledge is very limited. At present theoretical insight into collective dynamics
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can be gained either by simulations or by studying numerically or analytically
rather simplified models of actual condensed matter systems. Whereas in the for-
mer case the limitations on system size and time scales are very severe, in the
latter case one has to be careful in accounting within the model for all those
aspects of the actual systems which are relevant for the collective behavior un-
der study. Understanding the link between the microscopic physical parameters
of the system and those defining the effective dynamic models is also a crucial
issue. Due to these difficulties only in few cases one is able to provide theoreti-
cal predictions that can be quantitatively compared with experiments—provided
that those can be carried out in the first place. Nevertheless there are instances
in which a universal collective behavior emerges which is largely independent of
the microscopic details of the system and, as a consequence, also of the specific
model used to describe it. These highly valuable circumstances arise naturally
upon approaching a critical point, where the system undergoes a continuous, i.e.,
second-order phase transition. For universal critical properties such as critical
exponents, scaling functions, and amplitude ratios, one is usually able to pro-
vide theoretical predictions that can be tested quantitatively by comparison with
experimental data. In view of the universality of the critical properties, which
is justified by the framework of renormalization-group theory and supported by
experimental evidence, it is possible to study the collective behavior in terms of
suitable field-theoretical models, based on minimalistic fixed-point equations of
motions following from Landau type fixed-point Hamiltonians. This approach
has been carried out successfully during the last decades in order to study static
and dynamic critical properties of systems both in the bulk and in the pres-
ence of surfaces. In many cases the agreement between such field-theoretical
predictions and (mainly Monte Carlo) simulations or experimental data is
striking.

The collective behavior of a system close to its critical point can be described
in terms of the order parameter whose actual nature depends specifically on the
system. Indeed, as long as one is interested in its behavior at length and time
scales much larger than the microscopic ones, an effective Hamiltonian can be
used which reflects the internal symmetries of the underlying microscopic system
and which depends only on the order parameter and potentially a few other slow
modes.

Within this framework one can determine the actually observed non-analytic
behavior of thermodynamic quantities and structure factors upon approaching
the critical point. Moreover some of the quantities characterizing such non-
analyticities (e.g., critical exponents or amplitude ratios) turn out to be universal
in the sense that they depend only on general features of the effective Hamiltonian
such as the spatial dimension and internal symmetries but that they are independent
of the details of the actual system. The numerical values of the universal proper-
ties and of the universal scaling functions characterize the so-called universality
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classes.(1) On time scales much larger than the microscopic ones it is possible
to describe the dynamics close to critical points in terms of stochastic evolution
equations for the order parameter such that its resulting equilibrium distribution is
given by the effective Hamiltonian of the universality class which the system be-
longs to.(2) This approach allows one to compute systematically the non-analytic
behaviors observed in dynamical quantities, e.g., in the low-frequency limit of
the dynamic structure factor. In turn the associated universal quantities define
the dynamic universality class. One finds that each static universality class con-
sists of several dynamic sub-universality classes which differ, e.g., by different
conserved quantities, but nonetheless exhibit the same static universal properties.
As an example, the static universality class of the phase transitions in uniaxial
ferromagnets is the same as that of binary liquid mixtures although their univer-
sal dynamic behavior is captured by two different dynamic universality classes.
Various analytical methods, in particular the renormalization-group theory, have
been developed and applied to provide predictions for universal quantities. (See,
e.g., Ref. 3 for a recent review of the results obtained for the most relevant static
universality classes of critical phenomena in the bulk. A recent summary of bulk
critical dynamics can be found in Ref. 4.)

Within this framework it is possible to account for the effects of surfaces
on the critical behavior. Indeed real systems are always bounded by surfaces or
interfaces between different phases which break translational invariance and thus
are expected to influence the physical properties including universal features. In
particular it turns out that compared to the bulk the critical behavior is locally al-
tered within a distance from the surface of the order of the bulk correlation length.
The resulting critical behavior depends only on general properties of the surface
and in turn it can be classified in terms of different surface universality classes
branching from the same bulk universality class and which are in general charac-
terized by their own surface critical exponents different from the corresponding
bulk ones (see Refs. 5–7 for comprehensive reviews). On the other hand it turns
out that there are no independent dynamic critical surface exponents,(8) even if for
a given dynamic bulk critical behavior and static surface critical behavior different
dynamic surface universality classes exist.(9)

In addition to the local effects near surfaces, the properties of a system are
influenced by its finite size when the correlation length ξ becomes comparable to
the typical sample size L . Depending on the specific system and its geometry this
can result even in a suppression of the phase transition or, generally, in a shift of
the critical point and of coexistence curves which depends on L and vanishes in
the bulk limit L → ∞.(10) The scaling behavior that is observed upon approaching
the critical point is expected to involve L/ξ and its theoretical understanding is
based on the finite-size scaling theory.(10−12) As a consequence of confinement
and boundary conditions fluctuation-induced effective forces on the confining
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surfaces arise known as thermodynamic Casimir forces (see, e.g., Refs. 12–16 and
references therein).

Thin films provide the simplest geometry for studying theoretically the ef-
fects of confinement on phase transitions; moreover they are particularly relevant
experimental realizations of finite-size systems. Thin film are characterized by a
finite width, which in the present context is taken to be much larger than the typical
microscopic scale, and a macroscopicly large lateral extension, i.e., much larger
than the correlation length. Thin films of magnetic materials, confined fluids, and
wetting films represent specific systems with such a geometry which are indeed
investigated experimentally. Their static critical properties have been theoretically
and experimentally investigated in the past for different universality classes and
boundary conditions (see Refs. 17,18 and references therein).

Dynamics in confined geometry is, instead, a less explored subject, both at
the critical point and below. Novel phenomena have been observed in the dynamics
of phase separation(19) occurring in the two-phase region of the phase diagram
of confined binary liquid mixtures, after a quench from the homogeneous state.
In particular the interplay between surface-directed spinodal decomposition (see,
e.g., Ref. 20) and confinement has been studied numerically in Ref. 21 for a sym-
metric binary mixture with purely diffusive dynamics (Model B in the notion of
Ref. 2), a simplified form of the actual dynamics of fluid mixtures (Model H(2)).
At the bulk critical point, which is the focus of the present study, most of the
theoretical results have been obtained for the case of a finite hypercubic geom-
etry with periodic boundary conditions and purely dissipative dynamics (1,22−29)

(Model A in the notion of Ref. 2) or dynamics coupled to a conserved density(30)

(Model C in the notion of Ref. 2). The dynamic structure factor, the spin transport,
and the thermal conductivity of the three-dimensional XY model(31) as well as
some aspects of the non-equilibrium critical dynamics of the three-dimensional
Ising model(32) have been studied by means of Monte Carlo simulations on a cubic
lattice with periodic boundary conditions. In all the cases mentioned above, due
to the translational invariance, there are no surface, i.e., spatially varying effects.
Monte Carlo simulations have been performed to study the thermal conductivity of
the planar magnet lattice model in a bar-like geometry (H × H × L with L � H )
with open boundary conditions,(33) striving for a comparison with experimental
results for 4He at the superfluid transition confined to an array of pores.(34) The
same problem has been addressed within the field-theoretical approach, studying
Model F dynamics(2,35) in a L × L × ∞ geometry with Dirichlet boundary condi-
tions (DBC, i.e., vanishing surface fields) for the order parameter.(36) In both cases
the agreement with experimental data is quite good. Critical dynamics in the film
geometry has not yet been studied systematically, in spite of available experimental
data for some specific systems. In particular, the thermal conductivity of 4He close
to the normal-superfluid transition and in confined geometry has been investigated
experimentally in some detail. Field-theoretical methods have been employed to



Critical Dynamics in Thin Films 933

analyze the so-called thermal boundary resistance (Kapitza resistance) between
the superfluid 4He and the wall confining the system. This can be carried out by
considering Model F dynamics in a semi-infinite space with DBC.(18,37) In spite of
these results, for a specific surface quantity, the theoretical prediction for the full
finite-size behavior of the thermal resistance across a film is still lacking. More-
over, recent experimental findings(38) are in disagreement with the field-theoretical
predictions of Ref. 37. It has been argued that this might be a consequence of the
choice of DBC being inappropriate for describing helium confined to a film. Some
other transport properties have also been investigated theoretically for the film
geometry. In particular, in Ref. 39 the effects of confinement on the critical dif-
fusivities have been studied within the decoupled-mode approximation(40) for the
dynamic universality class of liquid-vapor phase transitions in a one-component
fluid (Model H in the notion of Ref. 2) and for the superfluid transition (described
by Model E(2)) with DBC at the confining plates. The diffusion constant con-
sidered is the one associated with the density current and the superfluid flow,
respectively. For confined binary mixtures similar quantities were indeed studied
previously(41) assuming for the order parameter non-wetting conditions (Neumann
boundary conditions) at the confining plates and non-slip boundary conditions for
the hydrodynamic shear modes. In Ref. 42 the finite-size behavior of the ultrasonic
attenuation which is observed upon approaching the critical point of the super-
fluid transition in 4He has been studied. The sound velocity can be related to the
frequency-dependent specific heat (see Ref. 42 and references therein), allowing
for a quite direct field-theoretical analysis within the Gaussian model. Instead of
the full Model F dynamics, which is the appropriate one to describe the superfluid
transition, it is possible to deal approximately with this problem by considering the
simpler Model A dynamics of the superfluid order parameter. Then, by applying
Dirichlet boundary conditions, the scaling functions for the ultrasonic attenuation
have been computed, resulting in a good agreement with available experimental
data.(42)

Recent efforts(43,44) address theoretically some aspects of non-equilibrium
(critical) dynamics of a scalar fluctuating field φ (which can be, e.g., the order
parameter of an Ising ferromagnet or the deformation of an elastic membrane) in
film geometry with DBC. The dynamics of φ is assumed to be purely dissipative
(as in Model A), the effective Hamiltonian is taken as a Gaussian, and the immobile
confining walls to be actually “immersed” in the fluctuating medium. However,
different from the usual Model A, the fluctuations of the field are taken either to
be due to external forces(43) or as quasi-equilibrium thermal noise generated by a
space- and time-dependent temperature profile(44) The main focus of these analyses
is the computation of the Casimir-like non-equilibrium fluctuation-induced force
that acts between the confining walls for different instances of driving forces and
temperature profiles, whereas little attention is paid to the actual dynamics of the
field φ in the space delimited by the walls.
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In spite of these results a systematic investigation of the critical dynamics
in film geometry is still lacking. In view of the rapidly developing experimental
techniques able to resolve space- and time-dependent quantities on the proper
mesoscopic scale it is important to provide theoretical predictions for experi-
mentally accessible quantities such, e.g, time-dependent response and correlation
functions, dynamics of fluctuation-induced forces, etc.

In the following we set up the field-theoretical description of the purely
relaxational dynamics (Model A in the notion of Ref. 2) in film geometry with
Dirichlet boundary conditions. We consider the static universality class of systems
with a N -component order parameter and O(N )-symmetric interactions, such as
the Ising model (N = 1) or the isotropic XY (N = 2) and Heisenberg (N = 3)
models. Although it is possible to study the relaxational dynamics for general N by
kinetic Monte Carlo simulations, for Model A N = 1 is the only physically relevant
case, experimentally realized in anisotropic magnets. For systems with N > 1 the
actual dynamics requires a description in terms of more complex models.(2,45)

Moreover also the proper description of mixing-demixing transitions in binary
liquid mixtures and liquid-vapor transitions in one-component fluids, whose static
universal properties are given by the case N = 1, calls for different dynamical
models and boundary conditions.(2,19) Accordingly, the model we consider here
is relevant for the dynamics of actual uniaxial magnetic films (without energy
conservation(2)) with symmetry-preserving boundary conditions and for Monte
Carlo simulations with Glauber dynamics of O(N ) order parameter models with
free boundary conditions. Keeping in mind these caveats the present analysis
provides a theoretical framework which might nonetheless turn out to be useful also
for the more complicated dynamical models. Explicit expressions for the universal
scaling functions are obtained within mean-field theory (Gaussian model), whose
actual behavior (independent of N ) turns out to be already quite rich. We discuss in
detail the surface behavior close to the confining walls and the temporal crossover
between different regimes. The analysis carried out here lends itself for possible,
future extensions within the field-theoretical approach to include the effect of
fluctuations beyond mean-field theory.

In the following we shall be concerned with the critical properties of films
close to the corresponding bulk critical temperature Tc,b. If the dimensionality
d of the confined system (with geometry ∞d−1 × L) is such that d − 1 > dlcd,
where dlcd is the lower critical dimensionality of the model (dlcd = 1 for N = 1,
whereas dlcd = 2 for N ≥ 2), then the effectively d − 1-dimensional system be-
comes critical at a shifted critical temperature Tc(L) < Tc,b.(46) The associated
critical properties around Tc(L) are those of the d − 1-dimensional bulk univer-
sality class. Interesting crossover phenomena take place in the film geometry if
the temperature is lowered from Tc,b – where the finite-size behavior of the system
depends on the bulk d-dimensional critical behavior – to Tc(L) where critical sin-
gularities with the exponents of the d − 1-dimensional universality class show up.
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These crossovers have been studied by Monte Carlo simulation both for magnetic
and non-magnetic systems (see, e.g., Refs. 5, 10, 47). The theoretical analysis is
based on suitable generalizations of the standard renormalization-group theory
(see Ref. 48 for a review) and turns out to be rather difficult already for static
properties. It would be interesting and challenging to extend such an approach to
dynamical properties.

After this introduction the paper is organized as follows. In Sec. 2 we recall
some general scaling properties which will be useful in the following. In Sec. 3 the
model is described and the universal scaling functions for the dynamic Gaussian
linear response and correlation functions are derived and studied in detail in Sec. 4.
In addition we discuss the effects of time-dependent fields on the fluctuation-
induced Casimir force acting on the confining walls of the system, providing
analytic expressions for the associated Gaussian scaling functions. In Sec. 5 the
nonlinear relaxation of the order parameter is analyzed at the bulk critical point of
the model and the crossover between bulk-like, surface-like, and eventual linear
relaxation is emphasized. In Sec. 6 we provide a summary of the main results.
Most of the details of the computations are reported in the Appendices B, C,
and E–G. Instead, in Appendix A the computation of the bulk universal amplitude
ratio associated with the divergence of the relaxation time is reported, whereas
in Appendix D we determine and discuss the useful analytic expression for the
static order parameter profile across the film in the low-temperature phase and for
Dirichlet boundary conditions, which, to our knowledge, has never been reported
in the literature.

After submission the paper “Thickness dependence of second-order magnetic phase
transitions in films,” Phys. Lett. A 351, 343 (2006) by J.-P. Adler and A. I. Buzdin,
has been published, from which our expression for the order parameter profile can be
recovered as a special case of their analysis.

2. GENERAL SCALING PROPERTIES

We consider a confined system in d dimensions with film geometry ∞d−1× L,
Dirichlet-Dirichlet boundary conditions (corresponding to the so-called ordinary-
ordinary surface universality class(6)) and purely dissipative relaxational dynamics
(Model A of Ref. 2).

For future reference we introduce here some of the notations used in the
following. We define the reduced temperature

τ = T − Tc,b

Tc,b
(1)

where T is the temperature and Tc,b is the transition temperature in the bulk.
With ξ and TR we denote the true correlation length and the true relaxation
time, respectively, as the characteristic length and time scales defined via the



936 Gambassi and Dietrich

exponential decay of two-point bulk correlation functions in thermal equilibrium.
Upon approaching bulk the critical point (τ → 0) both ξ and TR diverge with the
following leading singularities:

ξ (τ → 0±) = ξ±
0 |τ |−ν (2)

and

TR(τ → 0±) = T ±
0 |τ |−νz = T ±

0 (ξ/ξ±
0 )z (3)

where ν and z are universal standard bulk critical exponents whereas ξ±
0 and T ±

0
are non-universal amplitudes depending on the microscopic details of the system.
Within mean-field theory (MFT) corresponding to d > 4 one has ν = 1/2 and
z = 2, whereas, for the Ising universality class (N = 1) in d = 3, ν = 0.6301(4)(3)

and z � 2.02 (see Ref. 49 and references therein for a summary of the various
estimates of z). The values of ξ±

0 and T ±
0 are different for τ → 0+ and τ → 0−,

forming universal amplitude ratios ξ+
0 /ξ−

0 and T +
0 /T −

0 with ξ+
0 /ξ−

0 = √
2 within

MFT, whereas ξ+
0 /ξ−

0 = 1.896(10) 3 for the Ising universality class in d = 3.
For the second-moment correlation length similar results can be found in the
literature.(3,50) In Appendix 6 the ratio T +

0 /T −
0 is computed to first order in

ε = 4 − d for the Ising universality class of Model A, leading to T +
0 /T −

0 = 2
within MFT and T +

0 /T −
0 = 3.3(4) in d = 3 4 .

The bulk order parameter m vanishes for τ → 0− as

m = m0(−τ )β, (4)

with the universal exponent β and the non-universal amplitude m0; within MFT
β = 1/2, whereas for the Ising universality class in d = 3, β = 0.3265(3).(3)

In the following we will be concerned with quantities O defined in the film
geometry. They generally depend on a set {x, t} of spatial coordinates and times,
on the temperature (expressed in terms of τ ), and on the film thickness L . Since
upon approaching the critical point the dominant length and time scales are given
by ξ and TR , respectively, the following scaling behavior is expected in the critical
region |τ | � 1:

O ({x, t}; τ ≶ 0, L) = o
±
O

(
ξ

ξ±
0

)−�O

F (1)
O,±({x/ξ, t/TR}; L/ξ )

= o
±
O

(
L

ξ±
0

)−�O

F (2)
O,±({x/L , (t/T ±

0 )(ξ±
0 /L)z}; L/ξ ) (5)

3 This quantity is denoted by Uξgap in Ref. 3. The numerical value quoted here, obtained by combining
high-temperature expansions with a parametric representation of the equation of state, is taken from
Tab. 11 therein.

4 From Eq. (177) one has T +
0 /T −

0 = 2(1 + 2ε ln 2/3) + O(ε2). In order to obtain a rough estimate of
this ratio for ε = 1 the [0, 1] and [1, 0] Padé approximants can be used, yielding the value 3.3(4).
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where o
±
O are non-universal constants which have the same engineering dimen-

sion as the observable O and can be expressed in terms of ξ+
0 , m0, T +

0 , and
universal amplitude ratios. �O is the scaling dimension of the quantity O, and
F (i)

O,±, i = 1, 2, are universal scaling functions. The second line in Eq. (5) is the
scaling form, equivalent to the first one, in which we shall present our results.
For the two-point correlation function C (see Sec. 3) one has �C = d − 2 + η

(which agrees with the static two-point correlation function and defines the static
bulk critical exponent η with η = 0 within MFT, whereas η = 0.0364(5)(3) for
the three-dimensional Ising universality class) whereas for the response function
R, �R = �C + z = d − 2 + η + z. For the magnetization one has �m = β/(νz)
(�m = �C/(2z) if hyperscaling holds). Crossovers between surface and bulk sin-
gular behaviors characterized by surface and bulk critical exponents are related to
the singular behavior of the scaling functions F (i)

O,± if x approaches the confining
walls (see Sec. 5). In this respect one has to keep in mind that the scaling properties
(Eq. (5)) only hold in the scaling limit, i.e., distances between two spatial points,
distances from confining walls, and time differences must be sufficiently large
compared to microscopic scales. The field-theoretical approach has been proven
to be a powerful tool to compute both the exponents and the scaling functions
appearing in Eq. (5) for various measurable quantities. In the following we present
the mean-field form (i.e., Gaussian approximation in the field-theoretical language
which is valid for d = 4 up to logarithmic corrections) of the scaling functions
F (2)

O for various observables. In many cases a reasonably good agreement between
experimental or simulation data and field-theoretical computation is already ob-
tained by using mean-field scaling functions combined with higher-order estimates
for critical exponents entering into their scaling arguments.

3. THE MODEL

3.1. Definition

The time evolution of a N -component field ϕ(x, t) = (ϕi (x, t), i = 1, . . . , N )
under purely dissipative relaxation dynamics (Model A of Ref. 2) is described by
the stochastic Langevin equation

∂tϕ(x, t) = −�
δH[ϕ]

δϕ(x, t)
+ ζ (x, t), (6)

where � is a kinetic coefficient, ζ (x, t) a zero-mean stochastic Gaussian noise
with correlations

〈ζi (x, t)ζ j (x
′, t ′)〉 = 2�δ(x − x′)δ(t − t ′)δi j , (7)

and H[ϕ] is the static Hamiltonian. The universal properties near the critical
point of a second-order phase transition are captured by the Landau-Ginzburg
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form(1,6,51,52)

H[ϕ] =
∫

V
dV

[
1

2
(∇ϕ)2 + 1

2
r0ϕ

2 + 1

4!
g0ϕ

4

]
+
∫

∂V
dd−1x‖

c

2
ϕ2, (8)

where r0 ∝ T is a parameter that takes the value r0,crit for T = Tc,b (r0,crit = 0
within MFT) and g0 > 0 is the coupling constant providing stability for τ < 0.
The surface term implies the boundary conditions ϕ = c−1∂x⊥ϕ at x⊥ = 0, L
such that the fixed-point value c = ∞ leads to Dirichlet boundary conditions
as considered in the following; we do not consider surface field contributions
hs

∫
∂V dd−1x‖ ϕ. We use the notations V = R

d−1 × [0, L] and dV = dd−1x‖dx⊥,
where the position vector x = (x‖, x⊥) is decomposed into the d − 1-dimensional
component x‖ parallel to the confining planar walls and the one-dimensional one
x⊥ perpendicular to them.

Instead of solving the Langevin equation for ϕ[ζ ] and then averaging over the
noise distribution P[ζ ], the equilibrium correlation and response functions can be
directly obtained by means of a suitable field-theoretical action S[ϕ, ϕ̃](1,51,52) so
that, for an observable O[ϕ],

〈O〉 ≡
∫

[dζ ] O[ϕ[ζ ]]P[ζ ] =
∫

[dϕdϕ̃] Oe−S[ϕ,ϕ̃]. (9)

(Note that within the conventions we adopt,
∫

[dϕdϕ̃] e−S[ϕ,ϕ̃] = 1(52)). For the
Langevin equation (6) with the Gaussian noise (Eq. (7)) the field-theoretical action
is given by(1,51,52)

S[ϕ, ϕ̃] =
∫

dt

∫
V

dV

[
ϕ̃∂tϕ + �ϕ̃

δH[ϕ]

δϕ
− ϕ̃�ϕ̃

]
, (10)

where ϕ̃(x, t) is an auxiliary field, conjugate to an external bulk field h which
linearly couples to the order parameter ϕ so that H[ϕ, h] = H[ϕ] − ∫ dV hϕ. As
a consequence, for an observable O the following relation for the linear response
to the field h holds:

δ〈O〉h

δh(x, t)

∣∣∣∣
h=0

= �〈ϕ̃(x, t)O〉h=0 , (11)

where 〈·〉h is the average taken with respect to the action S[ϕ, ϕ̃; h] associated
with H[ϕ, h]. In view of Eq. (11), ϕ̃(x, t) is called response field. In the following
we will be mainly concerned with the response of the order parameter field to the
external perturbation h, given by

R(x1, t1; x2, t2) = δ〈ϕ(x2, t2)〉h

δh(x1, t1)

∣∣∣∣
h=0

= �〈ϕ̃(x1, t1)ϕ(x2, t2)〉h=0. (12)

Causality implies that 〈ϕ(x2, t2)〉h does not depend on h(x1, t1) whenever t1 > t2,
i.e., the order parameter at a given time does not depend on possible perturbations
at later times. Accordingly R(x1, t1; x2, t2) vanishes for t2 < t1.
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The effect of confining walls in the case we are interested in amounts to the
Dirichlet boundary condition for the field ϕ (i.e., infinite surface enhancement c;
see above and Ref. 6),

ϕ(xB, t) = 0 , ∀t, (13)

where we denote by xB the position vector on the boundary ∂V . The Gaussian (i.e.,
g0 = 0) equation of motion for the field ϕ̃ given by −∂t ϕ̃ + �(−�ϕ̃ + r0ϕ̃) = 0
and Eq. (13) yield the boundary condition.5

ϕ̃∂x⊥ϕ|L
x⊥=0 = 0 , (14)

which is fulfilled by imposing

ϕ̃(xB, t) = 0 , ∀t. (15)

In order to diagonalize the Gaussian part of Eq. (10) it is useful to decompose
both fields ϕ and ϕ̃ in terms of eigenfunctions of the Laplacian � fulfilling the
boundary conditions (13) and (15)(8,13) according to

φ(x, t) =
∞∑

n=1

∫
p,ω

ei(p·x‖−ωt)φ̂n(p, ω)�n(x⊥; L), (16)

where φ = ϕ, ϕ̃, and ∫
p,ω

≡
∫

R
d−1

dd−1p

(2π )d−1

∫
R

dω

2π
(17)

with p as the d − 1-dimensional momentum parallel to the confining walls.
The transverse momentum takes, instead, discrete values kn = πn/L with n =
1, 2, . . . . The eigenfunctions �n(x⊥; L) are given by

�n(x⊥; L) =
√

2/L sin(kn x⊥), (18)

so that �n(x⊥ = 0; L) = �n(x⊥ = L; L) = 0. Note that for the total momentum
qn ≡ (p, kn) one has |qn| ≥ π/L and thus the homogeneous fluctuation mode is
suppressed by the boundary conditions. In terms of the functions introduced above,
the Gaussian part S0 of Eq. (10) can be written as

S0[ϕ̂, ˆ̃ϕ] = 1

2

∞∑
n=1

∫
p,ω

(ϕ̂n(−p,−ω), ˆ̃ϕn(−p,−ω))M

(
ϕ̂n(p, ω)
ˆ̃ϕn(p, ω)

)
, (19)

where the inverse propagator M is given by the matrix

M ≡
(

0 −iω + �
(
q2

n + r0
)

iω + �
(
q2

n + r0
) −2�

)
. (20)

5 Indeed
∫ L

0 dx⊥ϕ̃∂2
x⊥ϕ = ∫ L

0 dx⊥ϕ∂2
x⊥ ϕ̃ + (ϕ̃∂x⊥ϕ − ϕ∂x⊥ ϕ̃)|L

x⊥=0, where f |L
x⊥=0 ≡ f (x⊥ = L) −

f (x⊥ = 0).
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Within MFT, the two-point response and correlation function R(0) and C (0), re-
spectively, are determined by M

−1:

R(0)
i1i2n1n2

(p1, ω1; p2, ω2) ≡ �〈 ˆ̃ϕi1n1
(p1, ω1)ϕ̂i2n2 (p2, ω2)〉g0 = 0

= (2π )dδ(d−1)(p1 + p2)δ(ω1 + ω2)δi1i2δn1n2 R(0)(qn2 , ω2) (21)

where ik and nk indicate the field component and the Fourier mode according to
Eq. (16), respectively. For the correlation function one finds

C (0)
i1i2n1n2

(p1, ω1; p2, ω2) ≡ 〈ϕ̂i1n1 (p1, ω1)ϕ̂i2n2 (p2, ω2)〉g0 = 0

= (2π )dδ(d−1)(p1 + p2)δ(ω1 + ω2)δi1i2δn1n2 C (0)(qn2 , ω2) (22)

while 〈 ˆ̃ϕi1n1
(p1, ω1) ˆ̃ϕi2n2

(p2, ω2)〉g0=0 = 0 due to causality. From Eq. (20) one
obtains

R(0)(q, ω) = �

−iω + �(q2 + r0)
(23)

and

C (0)(q, ω) = 2�

ω2 + [�(q2 + r0)]2
. (24)

Note that R(0) and C (0) are the mean-field response and correlation function,
respectively, of the system in the bulk. Within MFT the presence of the boundaries
is accounted for by the spatial dependence of the eigenfunctions �n(x⊥; L) (see
Eq. (18)) and by the quantization of the allowed momenta.

For later purposes it will be useful to provide for these functions their repre-
sentation in terms of time and transversal coordinates xi⊥. Following Eq. (16) we
define

φ(p, x⊥, t) =
∞∑

n=1

∫
dω

2π
e−iωt φ̂n(p, ω)�n(x⊥; L), (25)

and

φ(p, x⊥, ω) =
∞∑

n=1

φ̂n(p, ω)�n(x⊥; L), (26)

so that, according to Eq. (22),

C (0)
i1i2

(p1, x1⊥, t1; p2, x2⊥, t2) ≡ 〈ϕi1 (p1, x1⊥, t1)ϕi2 (p2, x2⊥, t2)〉g0 = 0

= (2π )d−1δ(d−1)(p1 + p2)δi1i2 C (0)(p2, x1⊥, x2⊥, t2 − t1) (27)

and

C (0)
i1i2

(p1, x1⊥, ω1; p2, x2⊥, ω2) ≡ 〈ϕi1 (p1, x1⊥, ω1)ϕi2 (p2, x2⊥, ω2)〉g0 = 0

= (2π )dδ(d−1)(p1 + p2)δ(ω1 + ω2)δi1i2 C (0)(p2, x1⊥, x2⊥, ω2) (28)
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with an analogous expression for the response function. Using the above formulae
we obtain (recalling that qn ≡ (p, πn/L))

C (0)(p, x1⊥, x2⊥, t) =
∞∑

n=1

�n(x1⊥; L)�n(x2⊥; L)
∫

dω

2π
e−iωt C (0)(qn, ω) (29)

and

C (0)(p, x1⊥, x2⊥, ω) =
∞∑

n=1

�n(x1⊥; L)�n(x2⊥; L)C (0)(qn, ω), (30)

with C (0)(q, ω) given in Eq. (24). In Appendix 6 we show how one recovers
the known results for the equal-time correlation function in the film geometry
discussed in Refs. 17 and 53 for various boundary conditions and in Ref. 6,
Sec. IVA, in the case of a film with equal boundary conditions. Analogous relations
hold for the response function.

3.2. The Fluctuation-Dissipation Theorem

For small fluctuations within equilibrium dynamics the two-point response
and correlation functions are not independent quantities. The relation between
them is provided by the fluctuation-dissipation theorem (FDT):

dC(t)

dt
= −R(t), for t > 0, (31)

where with C(t) and R(t) we indicate summarily the time-dependent two-point
correlation function and the response function, respectively. As equilibrium quan-
tities their dependence on two time variables reduces to a dependence on the time
difference only. Indeed the theorem is a consequence of the time-translation in-
variance and time-reversal symmetry of equilibrium dynamics. Keeping in mind
that correlations vanish in the long-time limit, one thus has

C(t) =
∫ ∞

t
ds R(s) , for t > 0. (32)

Time-reversal symmetry in the equilibrium state implies C(t) = C(−t), which,
combined with Eq. (32), allows one to determine completely the correlation func-
tion from the response function. Let us recall that the causality of the response
function (linear or not) implies R(t) ∝ θ (t) where θ (t) = 1 for t > 0 and 0 oth-
erwise. For later purposes it is useful to express the FDT also in other forms.
Defining the Fourier transform of C(t) as

C(ω) =
∫ +∞

−∞
dt eiωt C(t) (33)
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and with an analogous definition for R(ω) the FDT (Eq. (31)) can be written also
as

C(ω) = 2

ω
ImR(ω) (34)

where Im indicates the imaginary part of the expression. Equation (32) and causal-
ity yield another useful form of the theorem:

C(t = 0) = R(ω = 0). (35)

It is straightforward to verify that R(0) and C (0) given in Eqs. (23) and (24) as
well as Eqs. (29) and (30) satisfies the FDT (34). Moreover it can be shown that,
as expected on general grounds, this is true also if the effect of fluctuations are
taken into account, i.e., beyond MFT.

3.3. Some Mean-Field Results

According to the general scaling properties discussed in Sec. 2, within the
Gaussian approximation one can identify the correlation length ξ and the relaxation
time TR from Eqs. (23) and (24):

ξ (τ > 0) = r−1/2
0 (36)

and

TR(τ > 0) = (�r0)−1, (37)

respectively. Thus within MFT ν = 1/2 and z = 2 as expected, and the kinetic
coefficient � in Eq. (6) can be expressed in terms of the experimentally accessible
(non-universal) amplitudes ξ0 and T0 (see Eqs. (2) and (3)) as

� = ξ+
0

2

T +
0

(38)

and

r0 = τ

(ξ+
0 )2

. (39)

Moreover, for T < Tc,b the mean-field equation of state for the bulk order param-
eter m leads to

m = (−6r0/g0)1/2, (40)

i.e., β = 1/2, and

g0 = 6(m0ξ
+
0 )−2. (41)

The relations in Eqs. (36)–(41) hold for the present continuum model (Eqs. (6)–
(8)).
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4. LINEAR BEHAVIOR

In this section we study in some detail the behavior of the response and
correlation function for the model introduced in Sec. 3. By virtue of the FDT
linear response and correlation functions are not independent but the correlation
function can be obtained from the response function and vice versa. We shall first
focus on the response function in Subsec. 4.2 and then in Subsec. 4.4 we shall
determine correlation functions by applying the FDT.

4.1. Scaling Forms for the Response and Correlation Functions

For future reference we provide here the general scaling forms for some of
the quantities we shall discuss in the following. As already stated in Sec. 2 (see
Eq. (5)), scaling occurs upon approaching the critical point. In the specific case of
the two-point response function in the (p, x⊥, ω)-representation one has

R(p, x1⊥, x2⊥, ω) = ô
±
R

(
L

ξ±
0

)1−η

R ±(pL , x1⊥/L , x2⊥/L , ωT ±
0 (L/ξ±

0 )z, L/ξ ),

(42)
where ô

±
R are non-universal amplitudes which we fix to be equal to the corre-

sponding bulk ones. The functions R ± are universal scaling functions. In the
(p, x⊥, t)-representation, this reads

R(p, x1⊥, x2⊥, t)

= ô
±
R

T ±
0

(
L

ξ±
0

)1−η−z

R̄ ±(pL , x1⊥/L , x2⊥/L , (t/T ±
0 )(ξ±

0 /L)z, L/ξ ), (43)

where the universal functions R̄ ± are the Fourier transforms of R ± with respect
to their fourth argument.

Analogously, for the correlation function in the (p, x⊥, ω)-representation one
has

C(p, x1⊥, x2⊥, ω)

= ô
±
C

(
L

ξ±
0

)1−η+z

C ±(pL , x1⊥/L , x2⊥/L , ωT ±
0 (L/ξ±

0 )z, L/ξ ), (44)

where ô
±
C are non-universal amplitudes, which again we fix to be equal to the

corresponding bulk ones, and the functions C ± are universal scaling functions. In
the (p, x⊥, t)-representation, this reads

C(p, x1⊥, x2⊥, t)

= ô
±
C

1

T ±
0

(
L

ξ±
0

)1−η

¯C ±(pL , x1⊥/L , x2⊥/L , (t/T ±
0 )(ξ±

0 /L)z, L/ξ ), (45)
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where the universal functions C̄ ± are the Fourier transforms of C ± with respect
to their fourth argument. In view of the previous scaling forms it is convenient to
introduce the following suitable set of dimensionless scaling variables, defined as
p̄ = pL , x̄i⊥ = xi⊥/L , t̄± = (t/T ±

0 )(ξ±
0 /L)z , ω̄± = ωT ±

0 (L/ξ±
0 )z , and L̄ = L/ξ .

As stated above, concerning the non-universal amplitudes ô
±
R and ô

±
C we

consider the corresponding correlation functions (Eqs. (42) and (45)) in the bulk.
The critical structure factor in the bulk is given by

Cbulk
crit (q, t = 0) = D∞

q2−η
, (46)

which defines the non-universal amplitude D∞ (see, e.g., Ref. 50). Here and in the
following using the subscript “crit” means that the function corresponds to τ = 0,
i.e., to bulk criticality. Beyond MFT (in this case two-scale universality holds(50))
D∞ can be expressed in terms of the universal amplitude ratios Q3, Rc, and R+

ξ

(see Ref. 50 for their definitions and numerical values) and the non-universal bulk
amplitudes m0 and ξ+

0 (see also Ref. 17), as

D∞ = Q3 Rc

(R+
ξ )d

m2
0(ξ+

0 )d−2+η. (47)

From Eq. (46), via a Fourier transform in one of the d dimensions, one finds

Cbulk
crit (p, x1⊥, x2⊥ = x1⊥, t = 0) = GV p−1+η (48)

where GV has been introduced in Appendix A of Ref. 17 and is given by

GV = D∞
2
√

π

�(1/2 − η/2)

�(1 − η/2)
. (49)

In view of Eqs. (48) and (45) this leads to

ô
±
C = GV T ±

0 (ξ±
0 )1−η = 1

2
√

π

�(1/2 − η/2)

�(1 − η/2)

Q3 Rc

(R+
ξ )d

m2
0T ±

0 (ξ±
0 )d−1. (50)

The FDT (see Eq. (32)) establishes the following relation between the correlation
and response function:

C(p, x1⊥, x2⊥, t = 0) = R(p, x1⊥, x2⊥, ω = 0) (51)

so that in the bulk one has

Rbulk
crit (p, x1⊥, x2⊥ = x1⊥, ω = 0) = GV p−1+η. (52)

Comparing this equation with Eq. (42) leads to

ô
±
R = GV (ξ±

0 )1−η = 1

2
√

π

�(1/2 − η/2)

�(1 − η/2)

Q3 Rc

(R+
ξ )d

m2
0(ξ±

0 )d−1. (53)
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Thus the non-universal amplitudes of R and C are determined by the experimen-
tally accessible non-universal bulk amplitudes m0, ξ+

0 , and T +
0 . This fixes the

normalization of the scaling functions R̄ ± and ¯C ±. For the present model and
within mean-field theory these non-universal amplitudes are

D(0)
∞ = 1 (54)

and

G(0)
V = 1

2
(55)

so that

ô
±(0)
C = T ±

0 ξ±
0

2
(56)

and

ô
±(0)
R = ξ±

0

2
. (57)

Here and in the following with the superscript (0) we indicate the mean-field
value of the quantities which the superscript refers to. The FDT (see Eq. (32))
provides, together with Eqs. (50) and (53), the following relation between the
scaling functionsR̄± andC̄ ± (and thus between R and C ):

¯C ±(p̄, x̄1⊥, x̄2⊥, t̄, L̄) =
∫ ∞

|t̄ |
ds̄ R̄±(p̄, x̄1⊥, x̄2⊥, s̄, L̄). (58)

In the following we shall be mainly concerned with the case τ > 0. In order
to avoid a clumsy notation we thus shall omit in the following the specification ±
from scaling forms and amplitudes.

In Subsec. 4.2 we shall discuss the behavior of the response function in the
semi-infinite geometry close to a confining wall (see, c.f., Eq. (90)). It can be
obtained from the scaling function Eq. (43) in the limit L → ∞ with xi⊥, ξ , and
t fixed. Thus one expects a well-defined limit for the response function, i.e.,

R̄ (pL , x1⊥/L , x2⊥/L , (t/T0)(ξ0/L)z, L/ξ )

−−−−−−−−→
L →∞

(
L

ξ

)−(1−η−z)

R̄ ∞/2(pξ, x1⊥/ξ, x2⊥/ξ, (t/T0)(ξ0/ξ )z) (59)

where R̄ ∞/2 is the scaling function for the semi-infinite geometry. By using the
short-distance expansion (6) one easily concludes that for xi⊥ → 0 (i.e., xi⊥ �
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ξ, |p|−1, ξ0(t/T0)1/z) and6 t �= 0

R̄ ∞/2(pξ, x1⊥/ξ, x2⊥/ξ, (t/T0)(ξ0/ξ )z)

−−−−−−−−→
xi⊥ →0

(
x1⊥
ξ

x2⊥
ξ

)(β1−β)/ν

R̄
∞/2
W (pξ, (t/T0)(ξ0/ξ )z) (60)

where β1 is the critical exponent for the surface magnetization (6) (β1 = 1 at the
ordinary transition within mean-field approximation, whereas β1 � 0.77(2)(6) for
the three-dimensional Ising universality class). Considering the case p = 0 and
T → Tc,b (i.e., ξ → ∞) one expects

lim
y→0

R̄
∞/2

W (0, y) = Dy−2(β1−β)/(νz)+(1−η−z)/z, (61)

where D is a universal constant. Thus, for T = Tc,b and xi⊥ � ξ0(t/T0)1/z

R∞/2(p = 0, x1⊥, x2⊥, t → ∞)

= D ôR

T0

(
T0

t

)2(β1−β)/(νz)−(1−η−z)/z ( x1⊥
ξ0

x2⊥
ξ0

)(β1−β)/ν

(62)

where R∞/2 is the response function in the semi-infinite geometry.
In Sec. 4.4 we shall discuss in detail the mean-field behavior of the correlation

function C(p, x⊥, x⊥, ω) in planes parallel to the confining walls. For this function
we present in the following some scaling properties valid beyond the mean-field
approximation.

From a short-distance expansion one concludes that the scaling function
C (see Eq. (44)) of the correlation function C behaves as

C (pL , x1⊥/L , x2⊥/L , ωT0(L/ξ0)z, L/ξ )

−−−−−−−−→
xi⊥ →0

( x1⊥
L

x2⊥
L

)(β1−β)/ν
C W (pL , ωT0(L/ξ0)z, L/ξ ) (63)

for xi⊥ � L , ξ0(ωT0)−1/z, ξ, |p|−1, where C W is the universal scaling function
associated with the behavior close to the walls (in this case the one located at

6 Note that in general on the r.h.s. of Eq. (59) the following term appears in addition:

S∞/2
R δ+((t/T0)(ξ0/ξ )z )

(
x<
⊥
ξ

)(β1−β)/ν ( x<
⊥
ξ

)1−η⊥

where S∞/2
R is a universal constant, δ+(t̄ ) the delta function restricted the positive real axis (such

that
∫∞

0 dt̄ δ+(t̄ ) f (t̄ ) = f (0) with f test function), x<
⊥ = min{x1⊥, x2⊥}, and η⊥ = (β1 − β)/ν + η

(η⊥ = 1 within MFT). This term shows up as a constant in the short-distance expansion ofR̄ ∞/2

as function of frequency and, via the FDT, in the short-distance expansion of the static correlation

function (see p. 197 in Ref. 6 and Ref. 54). From Eq. (96) one finds S∞/2,(0)
R = 2.
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x⊥ = 0). The behavior of C W allows one to define the universal constant

AW ≡ C W (0, 0, 0), (64)

that appears in the scaling behavior

Ccrit(p = 0, x⊥, x⊥, ω = 0) = ôC AW

(
L

ξ0

)1−η+z ( x⊥
L

)2(β1−β)/ν
(65)

of the critical (i.e., τ = 0) correlation function for x⊥ � L . Analogously we can
define the following universal constants:

lim
w→∞ C W (0, 0, w) = AW

∞w2(β1−β)/ν−(1−η+z), (66)

lim
v→∞ C W (0, v, 0) = BW

∞v2(β1−β)/(νz)−(1−η+z)/z, (67)

and

lim
u→∞ C W (u, 0, 0) = CW

∞|u|2(β1−β)/ν−(1−η+z) (68)

entering into the scaling functions

C(p = 0, x⊥, x⊥, ω = 0) = ôCAW
∞

(
ξ

ξ0

)1−η+z ( x⊥
ξ

)2(β1−β)/ν

(69)

for x⊥ � ξ � L ,

Ccrit(p = 0, x⊥, x⊥, ω) = ôCBW
∞(ωT0)−(1−η+z)/z+2(β1−β)/(νz)

(
x⊥
ξ0

)2(β1−β)/ν

(70)

for (ξ0/L)z � ωT0 � (ξ0/x⊥)z , and

Ccrit(p, x⊥, x⊥, ω = 0) = ôCCW
∞(|p|ξ0)−(1−η+z)+2(β1−β)/ν

(
x⊥
ξ0

)2(β1−β)/ν

(71)

for 1/L � |p| � 1/x⊥, respectively.
From the previous equations we recover the values of well-known surface

critical exponents for the semi-infinite geometry, i.e., σ
(s)
τ , σ

(s)
ω , and σ

(s)
p .(8,55)

They describe the divergence of the two-point correlation function parallel to the

surface, so that for p = 0 and ω = 0 it diverges ∼ τ−σ
(s)
τ , for τ = 0 and ω = 0

it diverges ∼ |p|−σ
(s)
p , whereas for p = 0 and τ = 0 it diverges for ω → 0 as

ω−σ
(s)
ω .(55)

As far as the behavior of the correlation function in the middle of the film,
i.e., C(p, L/2, L/2, ω) is concerned we define (see Eq. (44))

C (pL , 1/2, 1/2, ωT0(L/ξ0)z, L/ξ ) = CI (pL , ωT0(L/ξ0)z, L/ξ ) (72)
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where CI is a universal scaling function. As already discussed for C W we can
define also from CI the following universal constants:

CI (0, 0, 0) = AI , (73)

lim
w→∞ CI (0, 0, w) = AI

∞w−(1−η+z), (74)

lim
v→∞ CI (0, v, 0) = B I

∞v−(1−η+z)/z, (75)

and

lim
u→∞ CI (u, 0, 0) = C I

∞|u|−(1−η+z). (76)

These constants enter into the following scaling functions:

Ccrit(p = 0, L/2, L/2, ω = 0) = AI ôC

(
L

ξ0

)1−η+z

, (77)

C(p = 0, L/2, L/2, ω = 0) = ôCAI
∞

(
ξ

ξ0

)1−η+z

for ξ � L , (78)

Ccrit(p = 0, L/2, L/2, ω) = ôCB I
∞(ωT0)−(1−η+z)/z for ωT0 �

(
ξ0

L

)z

,

(79)

and

Ccrit(p, L/2, L/2, ω = 0) = ôCC I
∞(|p|ξ0)−(1−η+z) for |p| � 1

L
, (80)

respectively. In Sec. 4.4 we shall confirm these scaling forms within mean-field
approximation and determine also the mean-field values of the universal constants
involved.

4.2. Response Function

Our aim here is to discuss, in different representations, the response function
introduced in Sec. 3. Combining the analogue of Eq. (29) for the response function
and taking into account the explicit expression in Eq. (23) we have∫ +∞

−∞

dω

2π
e−iωt R(0)(qn, ω) = θ (t) � e−�(q2

n+r0)t (81)

and thus

R(0)(p, x1⊥, x2⊥, t)

= θ (t) � e−�(p2+r0)t
∞∑

n=1

�n(x1⊥; L)�n(x2⊥; L)e−�(πn/L)2t . (82)
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Using the results of Appendix C we can write

R(0)(p, x1⊥, x2⊥, t)

= θ (t)
ξ z

0

T0

1

L
e−[(pL)2+(L/ξ )2](t/T0)(ξ0/L)z

�(x1⊥/L , x2⊥/L , (t/T0)(ξ0/L)z) (83)

with the mean-field expression of the scaling function � given in Eq. (186), which,
within MFT, does not depend on p or ξ . Within the same approximation the scaling
variable (t/T0)(ξ0/L)z is given by

t̄ ≡ (t/T0)(ξ0/L)z = �t/L2. (84)

In favor of a compact notation in the following we use this abbreviation keeping
in mind that it can be replaced by the r.h.s. of Eq. (84). The scaling properties
of the response function clearly emerge from this expression. Comparing with
the general scaling form Eq. (43) it is easy to see that (p̄ = pL , x̄i⊥ = xi⊥/L ,
L̄ = L/ξ )

R̄
(0)

(p̄, x̄1⊥, x̄2⊥, t̄, L̄) = 2e−(p̄2+L̄2)t̄�(x̄1⊥, x̄2⊥, t̄ ) (85)

where we used Eq. (57). Moreover, one can easily recover the result for the semi-
infinite geometry. Indeed, using Eq. (188) we find that for x̄i⊥ � 1 (i.e., close to
the near wall at x⊥ = 0) and t̄ � 1 (so that the influence from the wall at x⊥ = L
can be neglected near x⊥ = 0)

R(0)(p, x1⊥ � L , x2⊥ � L , t)

= θ (t)
ξ 2

0

T0

1

L

e−(p̄2+L̄2)t̄

√
4π t̄

[
e−(x̄1⊥−x̄2⊥)2/(4t̄ ) − e−(x̄1⊥+x̄2⊥)2/(4t̄ )

]
(86)

in agreement with Eqs. (II.18) and (II.19) in Ref. (8). Note that the previous
expression is indeed independent of L , as expected for the limit we are considering.
Equation (188) provides also a representation of the response function in terms
of the bulk response to a set of image excitations. Let us recall that the response
function in the bulk is given by

R(0)
bulk(p, x1⊥, x2⊥, t)

= θ (t)
ξ0

T0
e−(p2ξ 2

0 +ξ 2
0 /ξ 2)t/T0

1√
4π t/T0

e−(x1⊥−x2⊥)2/(4ξ 2
0 t/T0). (87)

According to Eqs. (83) and (188) one has

R(0)(p, x1⊥, x2⊥, t) =
+∞∑

n=−∞

[
R(0)

bulk(p, x+
n⊥, x2⊥, t) − R(0)

bulk(p, x−
n⊥, x2⊥, t)

]
(88)

where x+
n⊥ ≡ x1⊥ + 2nL and x−

n⊥ ≡ −x1⊥ + 2nL . The set {x+
n⊥}n �=0 represents

the positions at which the “positive” images are located, whereas {x−
n⊥}n gives the
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Fig. 1. Set of images corresponding to a perturbation actually applied at x1. x2 is the point at which the
effects of the perturbation are observed. Image sources are obtained by successive reflections of the real
and image sources with respect to the confining walls. At each reflection the sign of the contribution
to the total response changes, starting from a positive sign for the actual source.

positions of the “negative” ones. This construction is illustrated in Fig. 1. By virtue
of the FDT Eq. (88) is also valid for the correlation function, with R replaced by
C in the expression. Moreover it is an extention to the dynamics of the analogous
formula known for the static correlation function (see, e.g., Subsec. IVA of Ref. 6
and Ref. 43).

Let us consider the long-time limit of the response function in Eq. (82). For
t̄ � 1, i.e., when the effect of confinement is no longer negligible, the sum in
Eq. (82) is dominated by the lowest mode of the system, i.e., by n = 1. Thus one
has

R(0)(p, x1⊥, x2⊥, t → ∞)

= θ (t)
ξ 2

0

T0
e−(p̄2+L̄2)t̄ [�1(x1⊥; L)�1(x2⊥; L)e−π2 t̄ + O(e−4π2 t̄ )], (89)

i.e., the linear response to an external perturbation decays in time exponentially
with a factor exp[−(q̄2

1 + L̄2)t̄] where, according to our notation, qn = (p, πn/L).
This exponential decay also holds for the two-point correlation functions. Even at
Tc,b and for excitations which do not break the translational invariance in lateral
direction x‖, i.e., for p = 0, there is an exponential decay due to |q1| ≥ π/L .
This is the result of the combined effect of confinement and Dirichlet boundary
conditions which suppress homogeneous modes (with vanishing total momentum
q0 = 0) in the system. In the case of periodic and Neumann–Neumann boundary
conditions for this confined system we expect an algebraic decay as function of
time for the critical response to an external perturbation with p = 0, given that
the mode with q0 = 0 does occur in the corresponding spectra. On the other
hand an algebraic decay can be recovered also in the case we are considering.
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Indeed for T < Tc,b the dimensionless variable L̄2 = (L/ξ )2 appearing in the
previous equations has to be replaced by −1/2(L/ξ )2 within MFT leading to the
decay ∼ exp[−(q̄2

1 − L̄2/2)t̄ ]. Accordingly, upon decreasing the temperature T a
critical value Tc(L) < Tc,b exist for which this exponent vanishes. For T = Tc(L)
the bulk correlation length ξ attains the value ξc = L/

√
2π . This corresponds

to the critical-point shift in film geometry, that can also be determined from the
onset of a non-trivial order-parameter profile (see Appendix D). From this point
of view the fact that at T = Tc,b the response and correlation functions decay
exponentially reflects that Tc,b is above the critical temperature of the system in
the film, i.e., located within the disordered phase of the film. In the case of a semi-
infinite system the asymptotic decay of the response function is indeed algebraic
even for Dirichlet boundary conditions, as one can see directly from Eq. (86) for
p = 0, T = Tc,b, and t/T0 � x2

i⊥/ξ 2
0 :

R(0)
∞/2(p = 0, x1⊥, x2⊥, t → ∞)

= 1√
4π

ξ0

T0

(
t

T0

)−3/2 x1⊥
ξ0

x2⊥
ξ0

[1 + O((xi⊥/ξ0)2(T0/t))]. (90)

This expression is in agreement with the general scaling form in Eq. (62) with the
mean-field values of the exponents and amplitudes (see Eqs. (38) and (57)), and
the universal constant D (see Eq. (61)) takes the value

D(0) = 1√
π

. (91)

This can also be interpreted as reflecting the fact that in the semi-infinite geometry
there is no critical point shift. The same conclusion can be reached in the case
of the film geometry with periodic or Neumann-Neumann boundary conditions
which, as mentioned previously, within mean-field theory do not lead to a critical
point shift in films.

From Eq. (89) we can see that for asymptotically large times, the spa-
tial dependence of the response function in the film geometry is given by
sin(πx1⊥/L) sin(πx2⊥/L).

According to Eq. (11) the linear response function R represent the order-
parameter profile due to a δ-like perturbation applied at an early time. Of course,
being derived in linear approximation, this function is useful only as long as the
subsequent values assumed by the order parameter are small enough compared to
nonlinear terms. The case of nonlinear relaxation will be discussed in Sec. 5.

In Fig. 2. the function �(x̄1⊥, x̄2⊥, t̄ ), i.e., R(0)(p, x1⊥, x2⊥, t) up to a spatially
constant prefactor (see Eqs. (43), (83), and (85)), is shown for two values of
x̄1⊥, i.e., the point at which the perturbation has been applied at time t = 0.
In accordance with our previous observation, the response function for t̄ � 1
turns into a sine function with period x̄2⊥ = 2. We observe clearly that there is
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Fig. 2. Time evolution of the scaling function �(x̄1⊥, x̄2⊥, t̄ ) which enters into the expression of the
response function in Eq. (83) (see also Eqs. (43) and (85)) with x̄i⊥ = xi⊥/L and t̄ = (t/T0)(ξ0/L)z .
In (a) the relaxation follows an excitation at the point x̄1⊥ = 0.2 and in (b) at the point x̄1⊥ = 0.5.
Reduced times t̄ listed in (a) and (b) refer to the various curves shown from top to bottom.

a qualitative change in the shape of the responding order-parameter profile as
time increases. In particular the inflection points, which are present just after
the perturbation has been applied,7 disappear in the long-time limit, after having
reached the closest surfaces.

In Fig. 3. we report the time t̄I (x̄1⊥) at which the inflection point (of � as a
function of x̄2⊥) close to the wall at x̄⊥ = 0 disappears. Given the symmetry of
the problem the analogous time for the inflection close to the wall at x̄⊥ = 1 is
simply given by t̄I (1 − x̄1⊥). The behavior of t̄I (x̄1⊥ → 0) can be easily predicted
by taking into account that in the semi-infinite geometry, for a given x1⊥, we expect
a finite non-zero value tI . According to this argument, in the limit L → ∞ with
fixed x1⊥, the relation

t̄I = FtI (x̄1⊥) (92)

should become independent of L , i.e., (see Eq. (84))

FtI (y → 0) ∼ y2 (93)

and thus (see Fig. 3)

t̄I (x̄1⊥ → 0) ∼ x̄2
1⊥. (94)

As discussed in Appendix E it is possible to determine analytically, within MFT, the
proportionality factor in Eq. (94), which turns out to be 1/6. Moreover FtI (y = 1)
can also be determined.

7 According to Eq. (188), for t̄ � 1, �(x̄1⊥, x̄2⊥, t̄ ) has a Gaussian form as function of x̄2⊥ for fixed
x̄1⊥ and vice versa.
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Fig. 3. Time tI (x̄1⊥) at which the inflection in the response function disappears as a function of the
position x̄1⊥ at which the perturbation is applied. The dashed curve t̄(x̄1⊥) = x̄2

1⊥/6 is the quadratic
behavior expected for small x̄1⊥ which actually describes the curve even for a wide range of values of
x̄1⊥.

Interestingly, within mean-field theory it is possible to prove (c.f., Subsec. 4.3)
that tI (x̄1⊥) has also the meaning of being the time at which the fluctuation-induced
force acting on the confining walls is maximal.

Figures 2(a) and 2(b) clearly show that for t̄ small enough the order parameter
profile is well localized around the point at which the perturbation has been
applied, in accordance with the expectation that the effects of the perturbation
reach the different points of the system only with a certain delay. On the other
hand, irrespective of how small t̄ is, the order parameter is non-zero in the whole
range 0 < x̄2⊥ < 1 (even everywhere in the case of unbounded geometries), as
one realizes from Eqs. (85) and (186). This absence of a finite front propagation
speed is a consequence of the coarse-grained description underlying the field-
theoretical approach, in which the microscopic time and length scales are assumed
to be negligible compared to the mesoscopic ones, to the effect that the microscopic
dynamics, which of course exhibits a speed limit for the front propagation, appears
to be actually arbitrarily fast. (This is analogous to the case of random-walk models
of free diffusion and their corresponding continuum descriptions.)

For studies of the dynamical properties in the film geometry by means of
elastic scattering experiments one is interested in the two-point correlation function
in the (p, x⊥, ω)-representation. (The corresponding static properties of thin films
near continuous phase transitions have been studied theoretically in Ref. 17.) By
applying the FDT we can compute the corresponding function once the expression
for the response function is known in the same representation. In doing so we can
take advantage of the analytical results known for the static correlation function
(see Ref. 53 and Appendix B) given that, apart from a factor �−1, the expression
for R(0) in Eq. (23) is related to that for the static correlation function (i.e.,∫

dω/(2π )C (0)(q, ω) = 1/(q2 + ξ−2)) by means of a formal shift ξ−2 �→ ξ−2 −
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iω/�. Using Eq. (182) we find8

R(0)(p, x1⊥, x2⊥, ω) = L
sinh(ax<

⊥ ) sinh[a(L − x>
⊥ )]

aL sinh(aL)
,

a2 ≡ p2 + ξ−2 − iω/�, (95)

where x>
⊥ = max{x1⊥, x2⊥} = (x1⊥ + x2⊥ + |x1⊥ − x2⊥|)/2, and x<

⊥ = min
{x1⊥, x2⊥} = (x1⊥ + x2⊥ − |x1⊥ − x2⊥|)/2. Equation (95) agrees with what was
found in Ref. 39, Eq. (7), and Ref. 44, Eq. (13). Using Eq. (57) one can write this
expression in the scaling form given in Eq. (42):

R (0)(p̄, x̄1⊥, x̄2⊥, ω̄, L̄) = 2
sinh(ā x̄<

⊥ ) sinh[ā(1 − x̄>
⊥ )]

ā sinh ā
, (96)

where x̄<,>
⊥ = x<,>

⊥ /L ,

ā2 ≡ p̄2 + L̄2 − iω̄, p̄ = pL , L̄ = L/ξ, and ω̄ = (ωT0)(L/ξ0)z . (97)

4.3. Casimir Force

In a confined system the spectrum of the allowed critical fluctuations of the
order parameter is modified compared to the bulk case, depending on the specific
boundary conditions (i.e., surface universality classes) and on the film thickness
L . This leads to a finite-size contribution to the free energy. Accordingly, by
varying L one observes that the confining walls are subject to an L-dependent
effective force F per cross-section area of the film and per kBTc,b (where kB is the
Boltzmann constant) which is the statistical analogue(12,15) of the Casimir force
of quantum electrodynamics. In the case of the film geometry with the confining
plates belonging to (a, b)-surface universality classes [the case we are currently
interested in is the ordinary-ordinary (O, O) one] and in the static case F has been
shown to scale as function of the thermodynamic parameters (up to contributions
from additive renormalizations) as(14)

F(τ, h, L) = 1

Ld
F

(st)
a,b((h/h0)(L/ξ0)βδ/ν, L/ξ ) (98)

where the universal exponent δ and the nonuniversal amplitude h0 are defined
through the critical equation of state

h = h0
m

m0

∣∣∣∣ m

m0

∣∣∣∣
δ−1

, (99)

8 Note that fixing the branch of the square root defining a =
√

p2 + ξ−2 − i ω/� is irrelevant,
because Eq. (181) is symmetric in a.
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which expresses the dependence of the bulk order parameter m on the external
field h along the bulk critical isotherm T = Tc,b. Within MFT one has δ = 3.
Because of the two scale-factor universality (see, e.g, Ref. 50) the nonuniversal
amplitude h0 is related to the nonuniversal amplitudes m0 and ξ0 introduced in
Sec. 2 via

h0 = Rχ (R+
ξ )d

Rc
(ξ+

0 )−dm
−1
0 , (100)

where Rc, R+
ξ [see also Eq. (47)], and Rχ are universal amplitude ratios whose

actual definitions and values can be found in Ref. 50. In Eq. (98) the function F
(st)
a,b

is a universal scaling function with F
(st)
a,b(0, 0) = (d − 1)�a,b. The amplitude

�a,b is the so-called universal Casimir amplitude corresponding to (a, b) surface
universality classes. The effective force F between the confining walls is attractive
when F < 0 and repulsive otherwise. In this sense F can be viewed as a special
case of the more general case of fluctuation-induced effective interaction between
different objects immersed in a critical medium. In the following we consider only
the case (O, O) of ordinary-ordinary boundary conditions and therefore we shall
omit the specification (a, b) from the scaling functions and amplitudes. Within the
Gaussian approximation � is given by(13)

� = − 1

(4π )d/2
N �(d/2)ζ (d) (101)

where �(z) and ζ (z) denote the Gamma function and Riemann’s zeta func-
tion, respectively. The universal amplitude � and the universal scaling func-
tion F (st) can be determined by computing the singular part of the free en-
ergy of the system in confined geometry, based on the Hamiltonian (8). An
alternative approach, more suited for extensions to dynamics, is based on the
connection between the Casimir force and the expectation value of the stress-
tensor Tµν . (We refer the reader to the literature(15) for details.) In particular
one finds that the force density per kBTc,b on one of the confining walls ∂V is
given by

F = 〈T⊥⊥〉|∂V (102)

where T⊥⊥ is suitably defined in terms of the order parameter field ϕ. For the case
we are interested in one has, in the absence of surface fields (see, e.g., Ref. 15),

Fl(r )(x‖) = 〈T⊥⊥〉|∂V = 1

2

〈(
∂ϕ(x)

∂x⊥

)2
〉 ∣∣∣∣∣

x∈∂V

. (103)

Note that in the static case, for which ∂〈Tµν〉/∂xµ = 0, where µ, ν = ⊥, ‖, 〈T⊥⊥〉
is actually independent of the point of evaluation, including the surfaces. In the
dynamic case, in general the force density on the left wall (l) is different from the
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one on the right wall (r ) and it may vary spatially along the walls. The mean force
per area on the wall l(r ) is given by

Fl(r ) = 1

A

∫
A

dd−1x‖ Fl(r )(x‖). (104)

The relation between the thermodynamic Casimir force (defined from the finite-
size behavior of the free energy, see, e.g., Ref. 15) and the expectation value of
the stress tensor is based on the fact that the equilibrium distribution function of
the order parameter field ϕ is proportional to exp{−H[ϕ]}. In the case we are
interested in, H[ϕ] is the Landau–Ginzburg Hamiltonian in Eq. (8). (In turn, the
specific expression of the stress-tensor in terms of ϕ (Eq. (103)) is determined
by H.) When studying critical dynamics and the effects of time-dependent exter-
nal fields, such a connection is no longer evident because equal-time correlation
functions are generated through the distribution ∝ exp{−H[ϕ]} only asymptoti-
cally for large times, i.e., long after any perturbation has been switched off. In
principle it is not even obvious how to define a thermodynamic Casimir force
when studying dynamics, because strictly speaking in this case the equilibrium
free energy loses its significance. Therefore we assume as the definition of the
dynamic Casimir force the time-dependent expectation value of the equilibrium
stress-tensor, which renders the static Casimir force in thermal equilibrium (see
also Refs. 43, 44). Heuristically, this amounts to assume that at each time, analo-
gous to thermal equilibrium, there is an “energy cost” AδL〈T⊥⊥〉 associated with
the displacement δL of one of the confining walls, i.e., 〈T⊥⊥〉 provides the lo-
cal pressure.(43,44) It is desirable to establish a clearer connection between this
definition of the dynamic Casimir force and the force that can be measured di-
rectly in actual experiments and molecular dynamics simulations. The previous
definition is particularly suited for field-theoretical analysis. On the other hand
it does not lend itself straightforwardly for the study of the dynamic force via
Monte Carlo simulations. First, the explicit expression of the stress tensor in
terms of the order parameter field can be determined in general only perturba-
tively in terms of the coupling constant g0. Second, one has to construct the
lattice version of the stress tensor in terms of the microscopic degrees of free-
dom (e.g., spin variables); this construction is in general not free from ambigui-
ties. An alternative approach to this problem has been taken in Ref. 56 to study
the statistical fluctuations of the Casimir force(57) via Monte Carlo simulations.
However, so far this approach could be implemented only for periodic boundary
conditions.

We now consider the case in which the film, thermodynamically close to Tc,b,
is perturbed by a time-dependent external field h(x, t). For the ensuing dynamic
force density per kBTc,b exerted on one of the confining walls one expects a scaling
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behavior, as in Eq. (98),

Fl(r )(x‖, τ, L , t, {h(x, t)})

= 1

Ld
F

(dy)
a,b (x‖/L , L/ξ, (t/T0)(ξ0/L)z,

{(h(x/L , (t/T0)(ξ0/L)z)/h0)(L/ξ0)βδ/ν}) (105)

in terms of the scaling field h̄ defined via

h(x, t) = h0(L/ξ0)−βδ/ν h̄(x/L , (t/T0)(ξ0/L)z). (106)

In Eq. (105) we have assumed that L does not vary as function of time. For
a time-independent, spatially homogeneous external field h, F

(dy)
a,b reduces to

F
(st)
a,b introduced in Eq. (98). As explained in Appendix F, within the Gaussian

approximation it is possible to compute the force F exactly for a general external
applied field h(x, t). In order to elucidate some qualitative features of the dynamics
of the Casimir force after the perturbation, we consider the particular case in which
the field is instantaneously applied at a given time t1 and then immediately switched
off again, i.e., h(x, t) = h(x)δ(t − t1) with h(x) localized in the interior of the film.
After the perturbation the response starts to propagate in the film. At the very early
stage the response has practically not yet reached the confining walls, so that the
force acting on them is basically the equilibrium one corresponding to a vanishing
magnetic field. In course of time the perturbation induced by the field hits the
confining walls and correspondingly the force exerted on them changes. Finally,
because of the relaxational character of the dynamics, in the limit of long times the
perturbation induced by h disappears and accordingly the effective force reaches
again its equilibrium value.

4.3.1. Planar Perturbation

In order to illustrate such a behavior we consider the case in which the
perturbation does not break the translational symmetry along the confining walls
and is localized in the plane x⊥ = x1⊥, i.e., h(x, t) = hW δ(x⊥ − x1⊥)δ(t − t1).
From Eqs. (231) and (232) one finds for the left wall (the upper index (0) indicates
the Gaussian approximation)

F
(dy)(0)
l (L̄, t̄, ĥW )

= F (st)(0)(0, L̄) + 1

8
ĥ2

W

[
∂x̄2⊥R̄

(0)
(p̄ = 0, x̄1⊥, x̄2⊥, t̄ − t̄1, L̄)|x̄2⊥=0

]2
, (107)
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where the scaling function R̄
(0)

of the response function is given by Eq. (85) and

ĥW = ξ
(d+2)/2
0

(
L

ξ0

)βδ/ν−z−1 1

ξ0T0
hW (108)

is the scaling variable associated with hW . In the present case the functional
dependence of the force density on h(x, t) reduces to the dependences on hW , x1⊥,
and t1 and there is no spatial dependence of the force on the lateral coordinates.
According to Eq. (107), the response of the Casimir force to an external field is
related to the square of the spatial derivative of the response function evaluated
at one of the confining walls. As expected, the Casimir force depends only on the
time δt̄ = t̄ − t̄1 elapsed since the application of the external perturbation.

In the following we discuss in more detail the relaxation of the Casimir

force at the bulk critical point T = Tc,b, i.e., for L̄ = 0. In this case R̄
(0)

(p̄ =
0, x̄1⊥, x̄2⊥, δt̄, L̄ = 0) = 2�(x̄1⊥, x̄2⊥, δt̄ ) [see Eq. (85)] and plots of the func-
tion � are provided in Fig. 2 for various values of its scaling arguments. In the
present context the square of the derivative of these graphs at x̄2⊥ = 0 matters;
x̄1⊥ is the position of the applied perturbation. Moreover, the static contribu-
tion in Eq. (107) is simply given by the Casimir amplitude � [see Eq. (101)],
i.e., F (st)(0)(0, L̄ = 0) = (d − 1)�. Note that � < 0 for the case we are inter-
ested in,(13) whereas the contribution stemming from the field perturbation is
always positive. Therefore the overall sign of the effective force on the left
wall depends on the strength ĥW of the applied field and on the actual posi-
tion where it has been applied; in particular it may become positive, i.e., re-
pulsive within a time window during the relaxation process. Given the expres-
sion of � in Appendix 6 [see Eq. (186)] it is possible to compute analytically
the critical scaling function in Eq. (107). According to the qualitative behav-

ior described above and according to Fig. 4.2, |∂x̄2⊥R̄
(0)

(p̄ = 0, x̄1⊥, x̄2⊥, t̄, L̄ =
0)|x̄2⊥=0| = 2|∂x̄2⊥�(x̄1⊥, x̄2⊥, t̄ )|x̄2⊥=0| displays, as function of time, a maximum
for t̄ = t̄M (x̄1⊥) which is implicitly defined by the condition

∂t̄∂x̄2⊥�(x̄1⊥, x̄2⊥, t̄ )|x̄2⊥=0,t̄=t̄M (x̄1⊥) = 0 . (109)

On the other hand, from the definition of � in Eq. (183), together with Eq. (18) it is
easy to realize that ∂t̄�(x̄1⊥, x̄2⊥, t̄ ) = ∂2

x̄1⊥�(x̄1⊥, x̄2⊥, t̄ ) = ∂2
x̄2⊥�(x̄1⊥, x̄2⊥, t̄ ).

Accordingly ∂t̄∂x̄2⊥�(x̄1⊥, x̄2⊥, t̄ ) = ∂3
x̄2⊥�(x̄1⊥, x̄2⊥, t̄ ) and the necessary condi-

tion (109) can be written as

∂3
x̄2⊥�(x̄1⊥, x̄2⊥, t̄ )|x̄2⊥=0,t̄=t̄M (x̄1⊥) = �(0,3)(x̄1⊥, 0, tM (x̄1⊥)) = 0 . (110)

where we use the notation introduced after Eq. (215) in Appendix E. Comparing
Eq. (110) with Eq. (221) one sees that t̄M (x̄1⊥) and t̄I (x̄1⊥) (Eq. (92)) satisfy
the same equation. On the basis of the qualitative behavior of � one expects
the solution to be unique and thus t̄M (x̄1⊥) = tI (x̄1⊥), i.e., the time at which
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Fig. 4. Dependence of the amplitude AW
� (x̄1⊥), which determines the critical Casimir force maximum

(d − 1)� + ĥ2
W AW

� (x̄1⊥) on the left wall [Eq. (111)], on the normal distance x̄1⊥ where the planar
perturbation is applied. The asymptotic behaviors for x̄1⊥ → 0 and x̄1⊥ → 1 are indicated as dashed
and dashed-dotted lines, with K1 = 27e−3/π � 0.427889 and a1 � 17.541, respectively. Note that
already for x̄1⊥ <∼ 0.6 the asymptotic behavior K1/x̄4

1⊥ for x̄1⊥ → 0 provides a rather good estimate

of the actual value AW
� (x̄1⊥).

|∂x̄2⊥�(x̄1⊥, x̄2⊥, t̄ )|x̄2⊥=0| displays a maximum for a fixed value of x̄1⊥ equals the
time t̄I (x̄1⊥) at which the inflection point of �(x̄1⊥, x̄2⊥, t̄ ) as a function of x̄2⊥
reaches the surface at x̄2⊥ = 0 (see Fig. 3).

Motivated by Eq. (107) we define

AW
� (x̄1⊥) = F

(dy)(0)
l (0, t̄I (x̄1⊥), ĥW ) − F (st)(0)(0, 0)

ĥ2
W

= 1

2

[
∂x̄2⊥�(x̄1⊥, x̄2⊥, t̄I (x̄1⊥))|x̄2⊥=0

]2
(111)

so that (d − 1)� + ĥ2
W AW

� (x̄1⊥) is the maximum value of the force to which the
left wall at x̄⊥ = 0 is subject if the field is applied at the normal distance x̄1⊥.
Figure 4 shows the dependence of the maximum of the field-induced force on the
position x1⊥ of the perturbation whereas in Fig. 5 we show the time dependence
of the normalized dynamic part of the force

F W
� (x̄1⊥, t̄ ) = F

(dy)(0)
l (0, t̄, ĥW ) − F (st)(0)(0, 0)

ĥ2
W AW

� (x̄1⊥)
(112)

for various values of x̄1⊥. The asymptotic behaviors of AW
� (x̄1⊥) for x̄1⊥ → 0

and x̄1⊥ → 1 are given by AW
� (x̄1⊥ → 0) = K1/x̄4

1⊥ with K1 = 27e−3/π �
0.427889 and AW

� (x̄1⊥ → 1) = a1(1 − x̄1⊥)2 with a1 � 17.541, respectively (see
Appendix F.2). As Fig. 4 clearly shows, they provide very good approximations
to the actual function AW

� already for x̄1⊥<∼0.6 and x̄1⊥>∼0.75, respectively. As
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Fig. 5. Time dependence of the normalized dynamic part of the critical Casimir force F W
� (x̄1⊥, t̄ ) =

[F (dy)(0)
l (0, t̄, ĥW ) − F (st)(0)(0, 0)]/[ĥ2

W AW
� (x̄1⊥)] for various values of the position x̄1⊥ where the

perturbation is applied. For t̄ = t̄I (x̄1⊥) the Casimir force reaches its maximum (compare Fig. 3). The
dashed and dash-dotted lines indicate the limiting shapes of the curves for x̄1⊥ → 0 and x̄1⊥ → 1,

respectively. For t̄ � 1/(3π2) the actual curves decay as ∼ e−2π2 t̄ .

expected, when the plane in which the external field is applied approaches the
distant wall (i.e., x̄1⊥ → 1), the actual response of the system is reduced due to
the Dirichlet boundary condition there and, due to the relaxational character of the
dynamics, the ensuing perturbation affects only slightly the wall at x̄⊥ = 0. This
qualitative behavior clearly emerges from Fig. 4. On the other hand, if the external
field is applied close to that wall where the response is monitored, the spatial
variation of the response function as a function of x̄2⊥ is sufficiently pronounced
to induce a strong force on the close wall. However, this force quickly decays
with time, and indeed t̄I (x̄1⊥ → 0) → 0 (see Fig. 3). The time dependence of the
normalized dynamic part of the force F W

� (x̄1⊥, t̄ ), reported in Fig. 5, depends
only weakly on x̄1⊥ when plotted as a function of the scaled time t̄/t̄I (x̄1⊥). In
Eqs. (245) and (246) we provide the asymptotic expressions for F W

� (x̄1⊥ → 1, t̄ )
and F W

� (x̄1⊥ → 0, t̄ ), respectively, shown in Fig. 5. For x̄1⊥ fixed and within
mean-field theory F W

� decays asymptotically as F W
� (x̄1⊥, t̄ → ∞) ∼ e−2π2 t̄ (see

Eq. (247)).

4.3.2. Localized Perturbation

Here we discuss the case in which the external field is localized at a single
point (x1‖, x1⊥) within the film, i.e., h(x, t) = h Pδ(x‖ − x1‖)δ(x⊥ − x1⊥)δ(t − t1).
From Eqs. (231) and (232) one finds for the left wall at x̄⊥ = 0

F
(dy)(0)
l (L̄, t̄, ĥ P )

= F (st)(0)(0, L̄) + 1

2
ĥ2

P

e−(δx̄‖)2/(2δt̄ )−2L̄2δt̄

(4πδt̄ )d−1

[
∂x̄2⊥�(x̄1⊥, x̄2⊥, δt̄ )|x̄2⊥=0

]2
, (113)
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where δt̄ = t̄ − t̄1 and δx̄‖ = x̄‖ − x̄1‖. The function � is given by Eq. (186) and

ĥ P = ξ
(d+2)/2
0

(
L

ξ0

)βδ/ν−z−d 1

ξ d
0 T0

h P . (114)

In the following we discuss in more detail the relaxation of the Casimir force at bulk
criticality T = Tc,b, i.e., L̄ = 0. Different from the case of a planar perturbation,
here at a given time the force varies laterally. It depends on the normal distance
of the epicenter from the wall under consideration and on the radial distance |δx̄‖|
from the epicenter projected on this wall. The force decreases monotonically for
increasing radial distances |δx̄‖|. The qualitative time dependence of the force,
generated by a point-like perturbation, is expected to be independent of the actual
lateral position where it acts: As in the case of planar perturbations, the force
equals the equilibrium one for very short and very long times with a maximum in
between at t̄ = t̄M (δx̄‖, x̄1⊥) measured from t̄1. Upon increasing the lateral distance
|δx̄‖| from the source of the perturbation t̄M is expected to increase, because the
perturbation has to cover a larger distance until it hits the wall at the specified point.
The asymptotic behavior of t̄M for large |δx̄‖| can be inferred from Eq. (113) by
taking into account that

�(0,1)(x̄1⊥, 0, t̄ ) ≡ ∂x̄2⊥�(x̄1⊥, x̄2⊥, t̄ )|x̄2⊥=0 = 2π

∞∑
n=1

ne−π2n2 t̄ sin(πnx̄1⊥) .

(115)
For π2 t̄ � 1 the sum is dominated by its first term. This allows one to determine
its extremum as function of t̄ . At leading order the result is independent of x̄1⊥:

t̄M (|δx̄‖| � 1, x̄1⊥) =
√

4π2(δx̄‖)2 + (d − 1)2 − (d − 1)

4π2
. (116)

It is remarkable that in spite of the diffusive propagation of the perturbation
(Eq. (113)), the maximum of the laterally varying force moves asymptotically
with constant velocity: t̄M (|δx̄‖| → ∞) = |δx̄‖|/(2π ) so that with Eq. (84) this
asymptotic speed v is given by

v = 2π (ξ0/T0)(ξ0/L)z−1. (117)

Thus this speed decreases with increasing film thickness. It is possible to provide
an estimate of the typical value of v by considering the values of ξ0 and T0 that have
been experimentally determined. In Ref. 58 the critical dynamics of a ultrathin
film (bilayer) of iron grown on a tungsten substrate has been investigated via the
magnetic ac susceptibility. This system should provide a realization of the two-
dimensional Ising universality class with Model A dynamics (z � 2.1 (49,58)). In
particular T +

0,exp for the exponential relaxation time (see Appendix 6) has been

obtained from the fit of experimental data, yielding T +
0,exp = 2.6 ± 0.6 × 10−10 s.
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For ξ0 we take ξ0 � 3Å corresponding to the lattice constant, as it is usually the
case in magnetic materials.(45) Accordingly, for a thin film with L = 50 ξ0, one
finds v � 0.1 m/s.

By using the behavior of �(0,1) for π2 t̄ � 1 reported in Eqs. (236)
and (237) for x̄1⊥ → 1 and x̄1⊥ → 0, respectively, one can determine the cor-
responding behaviors of t̄M under the assumption π2 t̄M � 1 for which they are
given by

t̄M = d + 5 + (δx̄‖)2 −√[d + 5 + (δx̄‖)2]2 − 4(d + 2)[(δx̄‖)2 + 1]

4(d + 2)
(118)

for x̄1⊥ → 1 and

t̄M = (δx̄‖)2 + x̄2
1⊥

2(d + 2)
for x̄1⊥ → 0. (119)

Comparing with the numerical determination of t̄M (δx̄‖, x̄1⊥) it turns out that
Eq. (119) provides a good approximation for t̄M up to few percent in the re-
gion |δx̄‖|, x̄1⊥ <∼ 0.5, which corresponds to t̄M <∼0.1. (Note that for d = 1 and
δx̄‖ = 0 we formally recover the result for the planar perturbation, as can
be seen by comparing Eqs. (107) and (113).) In particular, from Eq. (118)
one finds t̄M (δx̄‖ = 0, x̄1⊥ → 1) = (4 − √

11)/10 � 0.0683375 for d = 3 and
t̄M (δx̄‖ = 0, x̄1⊥ → 1) = (9 − √

57)/20 � 0.0604236 for d = 4 for which the
Gaussian approximation becomes exact apart from logarithmic corrections. In
the case x̄1⊥ → 0 one finds from Eq. (119), t̄M (δx̄‖ = 0, x̄1⊥ → 0) = x̄2

1⊥/

[2(d + 2)].
Figure 6(a) shows t̄M (δx̄‖, x̄1⊥) in d = 3 as a function of |δx̄‖| for certain val-

ues of x̄1⊥. The asymptotic behaviors for x̄1⊥ → 1 (Eq. (118)) and for x̄1⊥ → 0
(Eq. (119)) as functions of |δx̄‖| are also shown as dashed lines up to a correspond-
ing value of t̄M � 0.1 (fulfilling the condition π2 t̄M <∼ 1 under which Eqs. (118)
and (119) have been derived). The dash-dotted line in Fig. 6(a) indicates the lead-
ing linear behavior of t̄M for large |δx̄‖| [see Eq. (116)], which provides a rather
good approximation of the actual dependence already for |δx̄‖| ≥ 1.0. Figure 6(b)
shows the comparison between t̄M (δx̄‖ = 0, x̄1⊥) in d = 3, 4 and t̄I (x̄1⊥) (see also
Fig. 3) [formally corresponding to the case d = 1]. The dashed curves indicate the
approximate expression Eq. (119) valid for small x̄1⊥, actually providing a rather
good approximation already for x̄1⊥ ≤ 0.6 − 0.8. Figure 6(b) clearly indicates
that tM decreases upon increasing d. Indeed, for fixed x̄1⊥, the factor t̄ d−1 in the
denominator of Eq. (113) increases the force at short times compared to the case
of the planar perturbation (Eq. (107)) where it is absent. This causes the maximum
of the resulting force to occur at earlier times t̄ , as indicated by Fig. 6(b).
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Fig. 6. Time t̄M (δx̄‖, x̄1⊥), at which the critical Casimir force at the point on the left wall at x̄1‖ + δx̄‖
reaches its maximum, as a function of |δx̄‖| in d = 3 (a). The external field has been applied at
(x1‖, x1⊥). The solid lines, from top to bottom, refer to the cases x̄1⊥ = 3/4, 1/2, and 1/4, whereas
the dashed lines show the asymptotic behaviors for x̄1⊥ → 0 (Eq. (119)) and → 1 (Eq. (118)) for
π2 t̄M � 1. The dash-dotted line indicates the approximation of t̄M for large |δx‖| given by Eq. (116),
which is already rather good for |δx‖| >∼ 1.0. For large |δx̄‖| the time t̄M becomes independent of x̄1⊥;
it increases linearly with the slope giving the inverse of the speed for the propagation of the force
maximum on the left wall (see Eq. (117)). In (b) we compare the time t̄M (δx̄‖ = 0, x̄1⊥) for d = 3, 4
with t̄I (x̄1⊥) (see Fig. 3), formally corresponding to the case d = 1. The dashed curves indicate the
quadratic behaviors expected for small x̄1⊥ and arbitrary d (see Eq. (119)) which actually describe the
curves rather well even for a wide range of values of x̄1⊥.

In analogy to Eq. (111), we define as a measure of the maximum force

AP
�(δx̄‖, x̄1⊥) = F

(dy)(0)
l (0, t̄M (δx̄‖, x̄1⊥), ĥ P ) − F (st)(0)(0, 0)

ĥ2
P

= 1

2

e−(δx̄‖)2/[2t̄M (δx̄‖,x̄1⊥)]

[4π t̄M (δx̄‖, x̄1⊥)]d−1

[
∂x̄2⊥�(x̄1⊥, x̄2⊥, t̄M (δx̄‖, x̄1⊥))|x̄2⊥=0

]2
.

(120)
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Fig. 7. Dependence of the amplitude AP
�(δx̄‖ = 0, x̄1⊥), which determines the critical Casimir force

maximum (d − 1)� + ĥ2
P AP

�(δx̄‖ = 0, x̄1⊥) at the point of the left wall closest to the point within the
film where the external field was applied, on the normal distance of the perturbation from the left wall.
The curves refer to the three-dimensional case, although the qualitative behavior is the same in d = 4.
The asymptotic behaviors for x̄1⊥ → 0 and x̄1⊥ → 1 (see Appendix F2) are indicated as dashed and
dashed-dotted lines, respectively, with K3 = 55/(4π2e5) � 0.169773 and a3 � 17.927. Note that, as
in the case in Fig. 4.3.1, the asymptotic behavior K3/x̄8

1⊥ for x̄1⊥ → 0 provides a rather good estimate
of the actual values already for x̄1⊥ <∼ 0.65.

We first discuss AP
�(δx̄‖ = 0, x̄1⊥), i.e., the maximum of the field-induced force

at the point of the wall closest to the source of the perturbation. Figure 7 shows
the function A�(δx̄‖ = 0, x̄1⊥) for d = 3, together with its asymptotic behav-
iors determined in Appendix F.2. According to Eqs. (250) and (251) they are
given by AP

�(δx̄‖ = 0, x̄1⊥ → 0) = Kd/x̄2(d+1)
1⊥ , with Kd defined in Eq. (243), and

AP
�(δx̄‖ = 0, x̄1⊥ → 1) = ad (1 − x̄1⊥)2, with ad defined by Eq. (252). The quali-

tative dependence of AP
�(δx̄‖ = 0, x̄1⊥) on x̄1⊥ is the same as that of AW

� (x̄1⊥).
According to Eq. (113), at a given time δt̄ elapsed after the perturbation,

the field-induced part of the Casimir force is a decreasing function of |δx̄‖|.
Therefore the maximum amplitude AP

�(δx̄‖, x̄1⊥) decreases with increasing lateral
distance |δx̄‖| from the point where the field has been applied. Figure 8 shows
the dependence of the maximum force amplitude AP

�(δx̄‖, x̄1⊥) in d = 3 on δx̄‖
for fixed values of x̄1⊥, normalized to its value at δx̄‖ = 0 (compare Fig. 7).
The solid lines correspond, from top to bottom, to x̄1⊥ = 1, 3/4, 1/2, and 1/4. For
x̄1⊥, |δx̄‖| <∼ 0.5 the approximate expression of AP

�(δx̄‖, x̄1⊥)/AP
�(δx̄‖ = 0, x̄1⊥) �

[1 + (δx̄‖)2/x̄2
1⊥]−(d+2) (Eq. (254)) provides a very good approximation of the

actual curves. For |δx̄‖| → ∞ this ratio decays ∼ exp(−2π |δx̄‖|) (Eq. (253)).
In Fig. 8 the dashed line refers to this asymptotic behavior for x̄1⊥ → 1. It is
interesting to note that for all x̄1⊥ the maximum of the field-induced force decays
rapidly with |δx̄‖| and is practically negligible compared with its value at δx̄‖ = 0
already for |δx̄‖| � 1.
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Fig. 8. Dependence of the normalized amplitude AP
�(δx̄‖, x̄1⊥) of the critical Casimir force maximum

with d = 3 on |δx̄‖| for various fixed x̄1⊥. The dashed line is the asymptotic behavior for |δx̄‖| � 1
and x̄1⊥ → 1, as obtained from Eq. (253). For |δx̄‖| → ∞ the curves vanish as ∼ exp(−2π |δx̄‖|)
(Eq. (253)).

Figure 9 shows the time dependence of the normalized dynamic part of the
Casimir force

F P
�(δx̄‖, x̄1⊥, t̄ ) = F

(dy)(0)
l (0, t̄, ĥ P ) − F (st)(0)(0, 0)

ĥ2
P AP

�(δx̄‖, x̄1⊥)
(121)

Fig. 9. Time dependence of the normalized dynamic part of the critical Casimir force F P
�(x̄1⊥, t̄ ) =

[F (dy)(0)
l (0, t̄, ĥ P ) − F (st)(0)(0, 0)]/[ĥ2

P AP
�(δx̄‖, x̄1⊥)] for various lateral distances |δx̄‖| from the

location of the perturbation at x̄1⊥ = 1/2, with d = 3. For t̄ = t̄M (δx̄‖, x̄1⊥) the Casimir force reaches
its maximum (compare Fig. 6). The different curves refer to |δx̄‖| = 0, 1, 2 and 4, from top to bottom.
The qualitative behavior of the curves is the same for other values of x̄1⊥. For δt̄ → ∞ the curve

vanish as (δt̄)−(d−1)e−2π2δt̄ .
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for d = 3, fixed x̄1⊥ = 1/2, and various values of |δx̄‖| = 0, 1, 2, and 4, from top to
bottom. When the F P

� is plotted as a function of t̄/t̄M its shape does neither depend
sensitively on the specific value of x̄1⊥ nor on the value of |δx̄‖|. For fixed δx̄‖ and
x̄1⊥, F

P
� decays asymptotically as F

P
�(δx̄‖, x̄1⊥, t̄ → ∞) ∼ (δt̄)−(d−1)e−2π2 δt̄ (see

Eqs. (113) and (115)).

4.4. Correlation Function

4.4.1. General Expressions

As discussed in Subsec. 3.2, the FDT relates the correlation function and the
response function via Eq. (31). Thus, taking into account Eq. (83), one finds that
the correlation function can be cast into the scaling form given in Eq. (45) with

C̄
,(0)

(p̄, x̄1⊥, x̄2⊥, t̄, L̄) = 2
∫ ∞

|t̄ |
ds̄ e−s̄/t̄0(p̄,L̄)�(x̄1⊥, x̄2⊥, s̄) (122)

where the value of the non-universal amplitude ôC is given by Eq. (56) and where
we have introduced

t̄0 = 1

p̄2 + L̄2
. (123)

The dependence of the scaling function C̄ (0) on t̄ for selected values of x̄1⊥
is shown in Fig. 10 at criticality and for p = 0, i.e., t̄0 = ∞, and for t̄0 < ∞ in
Fig. 11. As expected, C̄ (0) vanishes in the limit t̄ → ∞. According to Eqs. (182)
and (45) the scaling function C̄

(0)
st (p̄, x̄1⊥, x̄2⊥, L̄) = C̄ (0)(p̄, x̄1⊥, x̄2⊥, t̄ = 0, L̄)

Fig. 10. Time evolution of the mean-field scaling functionC̄ (0)(p̄, x̄1⊥, x̄2⊥, t̄, L̄) which enters into
the expression of the correlation function in Eq. (44) with x̄i⊥ = xi⊥/L , t̄ = (t/T0)(ξ0/L)z , L̄ = L/ξ ,
and t̄0 = 1/(p̄2 + L̄2) for p = 0 and T = Tc,b , i.e., t̄0 = ∞. We show correlations between points x̄2⊥
and x̄1⊥ = 0.2 (a) and x̄1⊥ = 0.5 (b). Reduced times t̄ listed in (a) and (b) refer to the various curves
shown from top to bottom. At t̄ = 0, the static correlation functionC̄ (0) exhibits a cusp at x̄1⊥ = x̄2⊥.
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Fig. 11. Same as in Fig. 10 but for t̄0 = 0.05 which leads to reduced correlations compared to
t̄0 = ∞. The cusps at x̄1⊥ = x̄2⊥ remain also for t̄0 < ∞.

of the static correlation function is given by

C̄
(0)
st (p̄, x̄1⊥, x̄2⊥, L̄) = 2

sinh
(
t̄ −1/2
0 x̄<

⊥
)

sinh
[
t̄ −1/2
0 (1 − x̄>

⊥ )
]

t̄ −1/2
0 sinh

(
t̄ −1/2
0

) , (124)

which, independently of the value of t̄0, is characterized by a cusp-like sin-
gularity for x̄1⊥ = x̄2⊥, clearly displayed in Figs. 10 and 11. In particular at
bulk criticality, i.e., L̄ = 0 and for p̄ = 0 (i.e., t̄0 = ∞), one finds (compare
Eq. (95))

C̄
(0)
st (p̄ = 0, x̄1⊥, x̄2⊥, L̄ = 0) = 2 x̄<

⊥ (1 − x̄>
⊥ ), (125)

which corresponds to a triangularly shaped correlation function vanishing at the
boundaries [see Fig. 10 and Eq. (182)]. The two-point correlation function in thin
films can be probed by scattering X-rays or neutrons under grazing incidence.(17,59)

The dependence of the corresponding scattering cross section on the lateral mo-
mentum transfer is dominated by the singular behavior of the two-point correlation
function in planes parallel to the surfaces of the film. With future technologies
it might be possible to extend such kind of scattering experiment into the time
domain. Therefore we discuss the particular case x1⊥ = x2⊥, i.e., C(p, x⊥, x⊥, ω).
The analysis of this particular case may also serve to enhance the general physical
insight into correlations in films.

In order to understand the behavior of this quantity we shall consider two
relevant limits: (a) the behavior close to the confining walls, i.e., x⊥ � L (surface
behavior; see Appendix G), and (b) the behavior in the interior, i.e., x⊥ = L/2.
Crossover effects are expected to occur in between.
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4.4.2. Behavior Near the Wall

To this end we rewrite Eq. (95), use the FDT (see Eq. (34)), cast it into the
scaling form given in Eq. (44), and use Eq. (56) for the nonuniversal amplitude:

C (0)(p̄, x̄1⊥, x̄2⊥, ω̄, L̄)

= 2

ω̄
Im

cosh[ā(1 − |x̄1⊥ − x̄2⊥|)] − cosh[ā(1 − x̄1⊥ − x̄2⊥)]

ā sinh ā
(126)

where ā has been defined in Eq. (97). By using the previous equation we obtain

C (0)(p̄, x̄⊥, x̄⊥, ω̄, L̄) = 2

ω̄
Im

cosh ā − cosh[ā(1 − 2x̄⊥)]

ā sinh ā
(127)

so that for |ā|x̄⊥ = |a|x⊥ � 1 (i.e., sufficiently close to one of the walls)

C (0)(p̄, x̄⊥, x̄⊥, ω̄) = −4
x̄2

⊥
ω̄

Im {ā coth ā(1 + O(|ā|x̄⊥))} , (128)

in agreement with the general behavior of C close to one wall, given in Eq. (63)
with

C
(0)
W (p̄, ω̄, L̄) = − 4

ω̄
Im {ā coth ā(1 + O(|ā|x̄⊥))} . (129)

We can distinguish two regimes, i.e., |ā| = |a|L � 1 (relevant for discussing the
connection with the results for the semi-infinite geometry) and |ā| = |a|L � 1.

• |ā| = |a|L � 1: In this case ā coth ā = ā(1 + O(e−2ā)) (we choose the branch
with positive real part in the square root defining ā, see footnote 8) and thus

C
(0)
W (p̄, x̄⊥, x̄⊥, ω̄) = − 4

ω̄
Im
{
ā(1 + O(|ā|x̄⊥, e−2ā))

}
. (130)

Using the definition of ā, one obtains

C
(0)
W (p̄, x̄⊥, x̄⊥, ω̄) = 2

√
2

1√
p̄2 + L̄2 +

√
(p̄2 + L̄2)2 + ω̄2

,

4

√
(p̄2 + L̄2)2 + ω̄2 � 1 and x̄⊥

4

√
(p̄2 + L̄2)2 + ω̄2 � 1. (131)

Equation (131) renders the limiting behaviors listed in Eqs. (69), (70), and (71) with
the mean-field universal amplitudes

AW (0)
∞ = 2, (132)

BW (0)
∞ = 2

√
2, (133)

CW (0)
∞ = 2, (134)
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and the mean-field values of the critical exponents. Corrections to the formu-
lae (69), (70), and (71) are exponentially small.

• |ā| = |a|L � 1: In this case one has (see Appendix G, Eq. (261)),

C (0)(p̄, x̄⊥, x̄⊥, ω̄) = 4

3
x̄2

⊥(1 − x̄⊥)2

×
{

1 − 2

15
(1 + 2x̄⊥ − 2x̄2

⊥)(p̄2 + L̄2)

+ 2

105

(
1 + 2x̄⊥ − x̄2

⊥
2

− 3x̄3
⊥ + 3

2
x̄4

⊥

)[
(p̄2 + L̄2)2 − 1

3
ω̄2

]
+ . . .

}
,

4

√
(p̄2 + L̄2)2 + ω̄2 � 1, x̄⊥ ≤ 1. (135)

Near one wall, i.e., for x̄⊥ � 1 this expression leads to

C
(0)
W (p̄, x̄⊥, x̄⊥, ω̄) = 4

3

[
1 − 2

15
(p̄2 + L̄2) + 2

105
(p̄2 + L̄2)2 − 2

315
ω̄2 + . . .

]
.

(136)

Fig. 12. Mean-field scaling function C (0)
W (0, 0, y) [C (0)

W (y, 0, 0)] which enters into the expression
of the correlation function C(p = 0, x⊥, x⊥, ω = 0) = ôC (L/ξ0)1−η−z(x⊥/L)2(β1−β)/νC W (0, 0, y =
L/ξ ) [Ccrit(p, x⊥, x⊥, ω = 0) = ôC (L/ξ0)1−η−z(x⊥/L)2(β1−β)/νC W (y = pL , 0, 0)] for L/x⊥ �
1, L/ξ [L/x⊥ � 1, |p|L], so that C (0)

W (0, 0, y → 0) [C (0)
W (y → 0, 0, 0)] = (4/3)[1 − (2/15)y2 +

(2/105)y4 + O(y6)] and C (0)
W (0, 0, y → ∞) [C (0)

W (y → ∞, 0, 0)] = 2/y + O(1/y2). Beyond mean-
field theory the asymptotic behavior of C W (0, 0, y = L/ξ ) and C W (y = pL , 0, 0) for large y is given
by Eqs. (66) and (68), respectively. The index W of the scaling function here and in Fig. 13 indicates
the behavior near the wall.
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Fig. 13. Mean-field scaling function C (0)
W (0, y, 0) which enters into the expression of the corre-

lation function Ccrit(p = 0, x⊥, x⊥, ω) = ôC (L/ξ0)1−η−z(x⊥/L)2(β1−β)/νC W (0, y = ωT0(L/ξ0)z, 0)

for T = Tc,b and L/x⊥ � 1, ωT0(L/ξ0)z , so that C (0)
W (0, y → 0, 0) = (4/3)[1 − (2/315)y2 +

O(y4)] and C (0)
W (0, y → ∞, 0) = 2

√
2/y1/2 + O(1/y). Beyond mean-field theory the asymptotic

behavior of C W (0, y = ωT0(L/ξ0)z, 0) for large y is given by Eq. (67).

From this expression we can identify the mean-field value of the universal constant
introduced in Eq. (64):

AW (0) = 4/3 . (137)

Figures 12 and 13 display the functions C
(0)
W (p̄ = 0, ω̄ = 0, L̄), C

(0)
W (p̄, ω̄ =

0, L̄ = 0), and C
(0)
W (p̄ = 0, ω̄, L̄ = 0), respectively, together with their asymptotic

behaviors given in Eqs. (69)–(71) and (136).
Thus, in contrast to the case of a semi-infinite geometry (in which the validity

of the behaviors in Eqs. (69), (70), and (71) extends down to 1/ξ = 0, ω = 0, or
p = 0, respectively), the critical correlation function in the film does not diverge
upon approaching the origin of the (ξ−1, p, ω)-space. This is a consequence of
the critical point shift in the film geometry. Of course this divergence is correctly
recovered in the limit L → ∞ (i.e., in the semi-infinite limit), where this shift is
absent.

4.4.3. Film Behavior

Now we consider the behavior of C (0)(p, x⊥, x⊥, ω) in the middle of the
film, i.e., C (0)(p, L/2, L/2, ω). According to Eqs. (44) and (77) this amounts to
studying C

(0)
I (p̄, ω̄, L̄). In that case we find (see Eq. (127))

C
(0)
I (p̄, ω̄, L̄) = C (0)(p̄, 1/2, 1/2, ω̄, L̄) = 2

ω̄
Im

tanh(ā/2)

ā
. (138)
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Again, we consider the two possible regimes |ā| = |a|L � 1 and |ā| = |a|L � 1.

• |ā| = |a|L � 1: In this regime one has

C
(0)
I (p̄, ω̄, L̄) = 2

ω̄
Im

{
1

ā

(
1 + O

(
e−2|ā|))} (139)

so that

C
(0)
I (p̄, ω̄, L̄) =

√
2

1√(
p̄2 + L̄2

)2 + ω̄2

√
p̄2 + L̄2 +

√
(p̄2 + L̄2)2 + ω̄2

,

4

√
(p̄2 + L̄2)2 + ω̄2 � 1. (140)

From this equation one easily recovers the limiting behaviors given in Eqs. (74),
(75), and (76), with the mean-field universal amplitudes

AI (0)
∞ = 1 (141)

B I (0)
∞ =

√
2, (142)

C I (0)
∞ = 1, (143)

and with the corresponding mean-field values of the critical exponents.
• |ā| = |a|L � 1: On the other hand, in the limit |ā| = |a|L � 1 one can make
use of Eq. (135) (valid in the case |a|L , |a|x⊥ � 1 and arbitrary x⊥ < L), with
x̄⊥ = 1/2, leading to

C
(0)
I (p̄, ω̄, L̄) = 1

12

[
1 − 1

5
(p̄2 + L̄2) + 17

560
(p̄2 + L̄2)2 − 17

1680
ω̄2 + . . .

]
,

4

√
(p̄2 + L̄2)2 + ω̄2 � 1. (144)

From Eq. (144) one infers the universal amplitude

AI (0) = 1

12
(145)

introduced in Eq. (73). As it is the case near a wall (see the remark at the end
of Subsec. 4.4.2), also in the middle of the film the correlation function does not
diverge at the origin of the (p, ξ−1, ω)-space; divergences appear only in the limit
L → ∞, for which the critical-point shift disappears and Tc,b coincides with the
critical temperature of the system. In particular, from Eq. (135) one finds

C
(0)
crit(p̄ = 0, x̄⊥, x̄⊥, ω̄ = 0) = 4

3
x̄2

⊥(1 − x̄⊥)2. (146)
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Fig. 14. Mean-field scaling function C (0)
I (0, 0, y) [C (0)

I (y, 0, 0)] which enters into the expression
of the correlation function C(p = 0, x⊥ = L/2, x⊥ = L/2, ω = 0) = ôC (L/ξ0)1−η−zC I (0, 0, y =
L/ξ ) [Ccrit(p, x⊥ = L/2, x⊥ = L/2, ω = 0) = ôC (L/ξ0)1−η−zC I (y = pL , 0, 0)], so that C (0)

I

(0, 0, y → 0) [C (0)
I (y → 0, 0, 0)] = (1/12)[1 − (1/5)y2 + (17/560)y4 + O(y6)] and C (0)

I (0, 0,

y → ∞) [C (0)
I (y → ∞, 0, 0)] = 1/y3 + O(1/y4). Beyond mean-field theory the asymptotic behav-

ior of CI (0, 0, y = L/ξ ) and CI (y = pL , 0, 0) for large y is given by Eqs. (74) and (76), respectively.
The index I of the scaling functions here and in Fig. 15 indicates the behavior within the interior (i.e.,
middle) of the film.

In Fig. 14 we show the functions C
(0)
I (p̄ = 0, ω̄ = 0, L̄) and C

(0)
I (p̄, ω =

0, L̄ = 0) which have (within MFT) the same scaling function if the scaling
variables are appropriately chosen. (In Fig. 14 the quantities in square brackets
refer to C

(0)
I (p̄, ω = 0, L̄ = 0).) The limiting behaviors of this function as given by

Eqs. (74), (76) and (73) are indicated as dashed and dash-dotted lines. In Fig. 15, we
plot C

(0)
I (p̄ = 0, ω̄, L̄ = 0) and its limiting behaviors given by Eqs. (73) and (75).

Fig. 15. Mean-field scaling function C (0)
I (0, y, 0) which enters into the expression of the correla-

tion function Ccrit(p = 0, x⊥ = L/2, x⊥ = L/2, ω) = ôC (L/ξ0)1−η−zCI (0, y = ωT0(L/ξ0)z, 0) for

T = Tc,b , so that C (0)
I (0, y → 0, 0) = (1/12)[1 − (17/1680)y2 + O(y4)] and C (0)

I (0, y → ∞, 0) =√
2/y3/2 + O(1/y2). Beyond mean-field theory the asymptotic behavior of CI (0, y = ωT0(L/ξ0)z, 0)

for large y is given by Eq. (75).
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The comparison between the scaling functions near the wall (Figs. 12 and 13)
and in the interior of the film (Figs. 14 and 15) shows that they exhibit the same
qualitative behaviors. However, the scaling functions in the interior decay more
rapidly for large scaling variables than their counterparts near the wall. Moreover,
their absolute values scale very differently as functions of L .

5. NONLINEAR BEHAVIOR

In the previous sections we investigated the linear response and correla-
tion functions within the Gaussian approximation for the dynamical functional
(Eq. (10)). The response function captures the behavior of small perturbations
around the equilibrium state of the system. The response function analyzed in
Subsec. 4.2 is useful to describe the relaxation process from an initial state with a
small value of the order parameter such that nonlinear terms can be neglected. On
the other hand both in experiments and numerical simulations this is often not the
case given that it is much easier to investigate the response of the system to finite
changes of the control parameters (such as temperature and external fields). While
typically the former relaxation process is characterized by exponential decays in
time, the latter leads to power-law behaviors. As a concrete example one can think
of an experimental protocol in which the system is initially prepared in an equi-
librium state with a non-zero value of the order parameter. This can be realized,
for example in magnetic systems, by preparing the sample in its low-temperature
phase or by applying an external field. Then the external parameters are changed
in a way that the order parameter in the corresponding equilibrium state vanishes,
as it is the case above or at the critical temperature, in the absence of external
fields. In order to describe the ensuing relaxation it is crucial to account for the
effects of nonlinear terms, as will be discussed below.

Let us now consider in more detail the case in which an external field h(x, t),
coupling linearly to the order parameter in the Hamiltonian H, is present during
the relaxation. The evolution equation for the quantity m(x, t) = 〈ϕ(x, t)〉 can
be derived in a standard way(60,61) and, at the lowest level in the loop expansion
(tree-level), it reads

h(x, t) = ∂t m(x, t) + �[−� + ξ−2 + g0

3!
m2(x, t)]m(x, t). (147)

In the case of confined geometries this equation, which is valid in the bulk, has
to be supplemented with the proper boundary conditions. For bulk systems with
homogeneous external fields the linear regime is identified as that one in which the
nonlinear term in Eq. (147) is negligible compared to ξ−2, i.e., g0

3! m2(x, t) � ξ−2.
In view of Eq. (41) this means m(x, t)/m0 � ξ0/ξ . (At the ordinary transition,
the equilibrium magnetization close to the surface vanishes as ∼ (Tc,b − T )β1

for T → T −
c,b, with β1 = 1 within MFT. Therefore, sufficiently close to Tc,b, the
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previous inequality is always fulfilled. Nevertheless the spatial inhomogeneity
caused by the boundary condition at the surface yields a contribution – due to
the term −�m in Eq. (147)– which effectively reduces the one due to the linear
term previously considered. Eventually, the nonlinear term dominates and the
proper nonlinear relaxation is displayed.) In that regime and in the absence of an
external field the temporal relaxation from an initial state with a homogeneous
order parameter is exponential. The range of validity of the linear approximation
shrinks upon approaching the critical point.(60−63) At Tc,b it is no longer possible
to neglect the nonlinear contribution which causes m to relax as a function of
time according to a power law. This general scenario can be modified by the
presence of confining walls, which change the spectrum of the operator −� in
Eq. (147). Thus, if this spectrum has a lower bound above zero (as it is the case for
Dirichlet-Dirichlet boundary conditions in a film for which the zero mode is not
allowed) the linear regime eventually dominates even at bulk criticality ξ = ∞.
This is a consequence of the critical-point shift in the film geometry. On the other
hand, for T < Tc,b, ξ−2 has to be replaced by −ξ−2/2 (within MFT) and so,
for T = Tc(L) < Tc,b, the spectrum of the operator −� − ξ−2/2 includes 0 and
the nonlinear contribution is no longer negligible. Therefore at Tc(L), m relaxes
according to a power law as a function of time. Beyond MFT this power law is
characterized by the critical exponents of a d − 1-dimensional bulk system.

Before discussing the nonlinear relaxation in the confined geometry, we sum-
marize briefly the results of the corresponding analysis of the semi-infinite geom-
etry, i.e., the effects of a single surface64–66 In particular we consider the typical
relaxation process, realized by applying an external field h(x⊥, t) = h(x⊥)θ (−t)
where x⊥ is the normal distance from the single wall. In this case the subse-
quent evolution depends on the resulting initial order parameter profile m0(x⊥) =
m(x⊥, t = 0). Within the field-theoretical approach it is possible to compute the
scaling function for the evolving order parameter profile, as carried out in Refs. 64
and 66 for Model A:

m(x⊥, t ; τ )

= m0(t/T0)−β/νz�((x⊥/ξ0)(t/T0)−1/z, t/TR, {(m0(x ′
⊥)/m0)(t/T0)β/νz})

(148)

where the temperature enters via the relaxation time TR (see Eq. (3)). For
(m0(x ′

⊥)/m0) ×(t/T0)β/νz � 1 the behavior of the system becomes independent of
the initial configuration and follows a universal scaling function �(v,w,∞). From
a short-distance expansion it is found that �(v → 0, w,∞) ∼ v(β1−β)/ν , so that at
criticality the magnetization close to the surface decays as t−β1/νz for t → ∞. For
fixed x⊥ and at criticality, after some (non-universal) initial transient behavior due
to the finite initial magnetization, the order parameter relaxes as m ∼ t−β/νz , i.e.,
according to the “bulk” behavior. (Of course one has �(∞, w,∞) = �bulk(w)).
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As time passes (i.e., t/T0 >∼ (x⊥/ξ0)z) the effect of the surface reaches the point
x⊥ and the relaxation crosses over towards the surface behavior, i.e., m ∼ t−β1/νz .
(Note that for the ordinary surface universality class β1 > β.) This crossover is
nicely displayed in Monte Carlo simulation data(65) Off criticality this picture is
modified only by the fact that when m becomes sufficiently small, i.e., t � TR ,
the system enters the linear regime where the decay of m is finally exponential.
Moreover the influence of the surface penetrates into the bulk only for a finite
distance ∼ ξ from the surface. Well inside the non-critical bulk no crossover is
expected between surface and bulk relaxation.

In Ref. 28 the relaxation close to the bulk critical point has been studied in
a finite hypercubic geometry Ld with periodic boundary conditions (no surfaces
breaking translational invariance), both by field-theoretical methods and Monte
Carlo simulations, paying particular attention to the effects of a finite value of the
uniform initial magnetization m0. At the bulk critical point and independently of
the value of m0 �= 0 the relaxation becomes exponential for t � T0(L/ξ0)z (as one
would expect because a finite system does not display critical behavior). For m0

large enough this stage is preceded by a nonlinear relaxation decay m ∼ t−β/νz ,
corresponding to the “bulk” behavior.

Focusing now on the film geometry, the corresponding nonlinear evolution
equation for m(x, t) is still given by Eq. (147) together with the boundary con-
ditions in Eq. (13). In order to proceed we introduce dimensionless quantities
via

m̄(x̄, t̄ ) ≡
√

g0

3!
Lm(x̄L , t̄ L2/�) = L

ξ+
0

m(x̄L , t̄ T0(L/ξ0)z)

m0
(149)

(using Eq. (41)) with x̄ ∈ R
d−1 × [0, 1]. Thus in the absence of the external field

Eq. (147) turns into

∂t̄ m̄(x̄, t̄ ) + [−�x̄ + τ̄ + m̄2(x̄, t̄ )]m̄(x̄, t̄ ) = 0 with m̄(x̄B, t̄ ) = 0,

(150)

where τ̄ ≡ (L/ξ )2 for τ > 0 and τ̄ ≡ −1/2(L/ξ )2 for τ < 0. (We recall that,
within mean-field theory, ξ (τ → 0+) = r−1/2

0 whereas ξ (τ → 0−) = (−2r0)−1/2.)
Using the scaled variables x̄, t̄ , and τ̄ there is no explicit dependence of the pro-
file m̄(x̄, t̄ ; τ̄ ) on the size L of the layer. Static solutions of Eq. (150) have been
discussed in detail in the literature for various boundary conditions (see, e.g.,
Refs. 46, 67, 68 and references therein). For τ̄ ≥ τ̄c (τc < 0 determines the critical-
point shift) the asymptotic solution of Eq. (150), m̄∞(x̄) = limt̄→∞ m̄(x̄, t̄ ), is
m̄∞(x̄) = 0, whereas in the low-temperature phase, i.e., τ̄ < τ̄c < 0, the order
parameter profile is non-trivial and its analytic expression can be found in Ap-
pendix D. The nonlinear partial differential equation (150) can be solved numeri-
cally. Starting from an arbitrary order parameter profile m̄0(x̄) ≡ m̄(x̄, t̄ = 0), with
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Fig. 16. Late relaxation of the order parameter m̄(x̄⊥, t̄ ) at bulk criticality in a film of thickness L as a
function of the reduced time variable t̄ = (t/T0)(ξ0/L)z , for various values of the distance x̄⊥ = x⊥/L
from one wall. Already for t̄ >∼ 0.2, m̄(x̄⊥, t̄ ) exhibits, independently of x̄⊥, its asymptotic long-time
behavior, characterized by the exponential decay which is indicated as a straight line in the figure.

m̄0(x̄B) = 0, the profile evolves according to Eq. (150). In analogy with the results
for the semi-infinite geometry,(64−66) we expect a non-universal behavior in the
early stage of relaxation due to the fact that the order parameter profile we start
with fulfills the Dirichlet boundary conditions and thus takes on small values near
the confining walls, while universal properties are observed in the scaling limit of
m̄0(x̄) being infinitely large. Note, however, that beyond MFT an additional initial
stage of relaxation with universal features is expected to occur for finite m̄0(x̄),
not only in the bulk(77) but also close to surfaces(7,78) and in finite volumes.(28,29,32)

In the following we discuss the behavior of the system at bulk criticality
τ̄ = 0.

In Fig. 16 we show the results of the numerical solution of Eq. (150), evolving
from an initial profile that is constant in the directions parallel to the confining
walls and has a trapezoidal shape in the transverse direction, fulfilling the bound-
ary conditions: m̄(x̄⊥, t̄ = 0) = K x̄⊥/D for 0 ≤ x̄⊥ ≤ D, m̄(x̄⊥, t̄ = 0) = K for
D < x̄⊥ < 1 − D, and m̄(x̄⊥, t̄ = 0) = K (1 − x̄⊥)/D for 1 − D ≤ x̄⊥ < 1. The
parameters D and K have been suitably chosen to ensure the stability of the nu-
merical solution of the equation (typical choices are D � 10−2 and K � 102).
Under this assumption the problem depends on a single space variable, given by
the distance from a wall 0 ≤ x̄⊥ ≤ 1/2, and on the time variable t̄ . The solution
for 1/2 < x̄⊥ ≤ 1 is obtained by taking into account the obvious symmetry of the
problem, i.e., m̄(x̄⊥) = m̄(1 − x̄⊥), provided the initial profile is chosen to share
this symmetry. In Fig. 16 different curves refer to different distances from the wall.
These data demonstrate clearly that asymptotically the relaxation is exponential
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Fig. 17. Early relaxation of the order parameter m̄(x̄⊥, t̄ ) at bulk criticality in a film of thickness L as a
function of the reduced time variable t̄ = (t/T0)(ξ0/L)z , for various values of the distance x̄⊥ = x⊥/L
from one wall. This is a magnification, on a log-log scale, of the interval t̄ < 0.2 in Fig. 16. The
two straight lines indicate the power-law behavior in the bulk (uppermost line) and close to surfaces,
respectively. The crossover from bulk to surface and from surface to film behavior (i.e., exponential
decay) is evident. For larger values of x̄⊥ the crossover occurs later.

in time, independently of x̄⊥, according to the behavior

m(x, t → ∞) ∼ e−π2(t/T0)(ξ0/L)z
. (151)

This behavior can be explained by analyzing Eq. (150) for the special case we are
discussing, i.e.,

∂t̄ m̄(x̄⊥, t̄ ) + [− ∂2
x̄⊥ + m̄2(x̄⊥, t̄ )

]
m̄(x̄⊥, t̄ ) = 0 (152)

with m̄(x̄⊥ = 0, t̄ ) = m̄(x̄⊥ = 1, t̄ ) = 0. In the linear regime (i.e., neglecting m̄2

in Eq. (152)) this equation can be solved straightforwardly, leading to

m̄(x̄⊥, t̄ ) =
∞∑

n=1

αne−π2n2 t̄ sin(πnx̄⊥) (153)

where the coefficients αn are determined by the initial profile. Thus for generic
values {αn} the leading asymptotic decay is indeed exponential (see Eq. (151))
and its dependence on x̄⊥ is given by sin(π x̄⊥). As already stated at the beginning
of this section, the exponential decay of the order parameter is intimately related
to the fact that in Eq. (153) the sum contains no zero mode n = 0 and that we
are considering the problem at the bulk critical point, located in the disordered
phase of the confined system. This is analogous to what has been observed in the
hypercubic geometry with periodic boundary conditions.(28) In the following we
consider the behavior at early times as shown in the log-log plot in Fig. 17.
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Fig. 18. Effective exponent κ(x̄⊥, t̄ ) for the order parameter relaxation at bulk criticality in a film of
thickness L (see Eq. (154)) as a function of t̄ = (t/T0)(ξ0/L)z and for various values of x̄⊥ = x⊥/L .
The two horizontal dashed lines represent the values of the exponent in the bulk (κ = 1/2) and close
to a surface (κ = 1), respectively. For t̄ < 10−4 the non-universal features of initial relaxation are
evident. The linear increase of κ(x̄⊥, t̄ >∼ 10−1) = ρ t̄ indicates an exponential relaxation ∼ e−ρ t̄ with

ρ = π2.

For small values of x̄⊥ (lower curves in Fig. 17) we note that the order
parameter relaxes according to a power law ∼ t−κs until the crossover towards
exponential decay takes place. On the other hand, for x̄⊥ = 1/2 (uppermost curve),
the power law is different and relaxation follows the law ∼ t−κb with κb < κs . For
intermediate values of x̄⊥ there is a crossover between the two power laws. In order
to elucidate this crossover, we compute the effective exponent of the relaxation as
the logarithmic derivative of the magnetization profile, i.e.,

κ(x̄⊥, t̄ ) ≡ −∂ log m̄(x̄⊥, t̄ )

∂ log t̄
. (154)

A power-law behavior corresponds to a value of κ independent of t̄ , while an
exponential decay ∼ e−ρ t̄ leads to κ = ρ t̄ . The behavior of κ(x̄⊥, t̄ ) is shown in
Fig. 18

In accordance with the relaxation behavior in the semi-infinite geometry we
expect the following qualitative picture of the order parameter evolution in a film.
At the beginning of the relaxation process the effect of both boundaries on the
relaxation behavior starts to propagate into the bulk. At a fixed distance from
the wall the relaxation process is characterized by the bulk exponent κb until the
influence of the closest surface reaches this point and changes the exponent into
the surface one κs > κb. We expect that the final crossover towards the exponen-
tial decay (due to the presence of two confining walls with Dirichlet boundary
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conditions) will take place via the intermediate stage of surface relaxation only
if the spatial point under consideration can be reached sufficiently in time by the
effect of one wall before the effect of the second wall arrives. This picture is
confirmed by Fig. 18, which provides a quantitative analysis. The two exponents κ

are readily determined as κs = 1 and κb = 1/2, corresponding to β1/νz and β/νz,
respectively, as in the case of the semi-infinite geometry. There is a large degree
of freedom in the definition of times at which crossovers take place. We define the
following typical times:

t̄c,b(x̄⊥) : κ(t̄c,b, x̄⊥) = 0.4, (155)

t̄c,bs(x̄⊥) : κ(t̄c,bs, x̄⊥) = 0.75, (156)

t̄c,e(x̄⊥) : κ(t̄c,e, x̄⊥) = 1.1. (157)

The first one, t̄c,b, is a measure of the time required to relax from the initial con-
dition. Its dependence on x⊥ carries non-universal information about the specific
initial profile. In the scaling limit of infinite initial magnetization (in the bulk)
t̄c,b = 0. The time t̄c,bs is a measure of the time required to cross over from the
bulk to the surface behavior. The value chosen in its definition is simply half way
between κb and κs . The corresponding plot is given in Fig. 19 (a). It is useful to
remark that t̄c,bs(x̄⊥) is expected to be finite (given that it is still related to “surface”
behavior) also in the limit L → ∞ at fixed x⊥, i.e., in the semi-infinite geometry.
As a consequence, based only on scaling arguments, we can deduce the behavior of
t̄c,bs(x̄⊥) for small x̄⊥. Since κ is dimensionless one expects the scaling behavior
κ(x⊥, t, L) = F (3)

κ (x⊥/L , (t/T0)(ξ0/L)z) (compare Eq. (5)). Thus, according to
the definition Eq. (156), it follows

tc,bs

T0

(
ξ0

L

)z

= Fc,bs(x⊥/L). (158)

A finite non-trivial limit for L → ∞ for fixed x⊥ exists provided

Fc,bs(y → 0) = Cbs yz (159)

with a constant Cbs which implies

tc,bs

T0

(
ξ0

L

)z

= Cbs

( x⊥
L

)z
, for x⊥/L � 1, (160)

so that

t̄c,bs(x̄⊥) = Cbs x̄ z
⊥, (161)

with z = 2 within MFT. This is in agreement with Fig. 19 (b) (apart from very
small values of x̄⊥ which are numerically still influenced by the initial relaxation)
yielding Cbs � 0.5.
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Fig. 19. (a) Crossover time t̄c,bs (see Eqs. (156) and (161)) between bulk-like and surface-like behavior
of relaxation. (b) Log-log plot of the crossover time t̄c,bs . The straight line indicates the quadratic law
expected to hold for small x̄⊥ within mean-field theory according to scaling arguments (see Eq. (161)).
For t̄ <∼ 10−2 there are deviations due to the non-universal initial relaxation. Beyond mean-field theory
t̄c,bs (x̄⊥ → 0) ∼ x̄ z

⊥.

The time t̄c,e measures the time required to enter the linear relaxation regime.
As can be seen from Fig. 20, t̄c,e(x̄⊥) attains a nonzero value for x̄⊥ → 0. This
means that in the limit L → ∞ at fixed x⊥ one has

tc,e(x⊥, L � x⊥)/T0 = De(L/ξ0)z, (162)

with De � 0.076. This divergence of the crossover time as function of L is expected
because in the semi-infinite geometry, i.e., for L → ∞, the crossover towards an
exponential decay never takes place.
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Fig. 20. Crossover time t̄c,e (see Eq. (157)) towards the linear relaxation behavior characterized by an
exponential decay of m̄(x̄⊥, t̄ ).

6. SUMMARY

Within the field-theoretical approach, we have investigated various uni-
versal aspects of the relaxational critical dynamics [Model A, Eqs. (6)–(8)]
in film geometry with Dirichlet boundary conditions, corresponding to the so-
called ordinary surface universality class. We have obtained the1 following main
results.

(1) (i) We have provided general scaling properties (see Section 2 and
Subsec. 4.1) for the two-point response R and correlation functions
C in the film geometry (Fig. 1). In particular, their Fourier transforms
in the directions parallel to the confining walls (with conjugate mo-
mentum p) scale as R(p, x1⊥, x2⊥, t) = (ô±

R/T ±
0 )(L/ξ±

0 )1−η−zR̄±(p̄ =
pL , x̄1⊥ = x1⊥/L , x̄2⊥ = x2⊥/L , t̄ = (t/T ±

0 )(ξ±
0 /L)z, L̄ = L/ξ ) and

C(p, x1⊥, x2⊥, t) = (ô±
C /T ±

0 ) (L/ξ±
0 )1−ηC̄ ±(p̄, x̄1⊥, x̄2⊥, t̄, L̄), respec-

tively, in terms of the film thickness L , the bulk correlation length
ξ (τ = (T − Tc,b)/Tc,b → 0±) = ξ±

0 |τ |−ν , and the relaxation time
TR(τ → 0±) = T ±

0 |τ |−νz above and below the bulk critical temperature
Tc,b, with the universal ratio T +

0 /T −
0 = 3.3(4) in spatial dimension d = 3

(Appendix A). The semi-infinite limit ofR̄+ is discussed in Eqs. (59)–(62)
and (91). The explicit forms of the associated universal scaling functions
R̄+ and C̄+ have been computed within Gaussian approximation (denoted
by (0)).

(ii) The time evolution of the mean-field scaling function R̄
(0)
+ [see

Eqs. (85) and (186)] for p̄ = 0 and T = Tc,b is shown in Fig. 2 for different
values of the scaling variables x̄i⊥ and t̄ . The curves in Fig. 2 provide (apart
from an amplitude) the time evolution of the order parameter profile across
the film at T = Tc,b after a laterally homogeneous perturbation confined to
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the plane x⊥ = x1⊥ and ∼ δ(t) has been applied. A qualitative feature of
interest is the time t̄I (x̄1⊥) at which the inflection points of these profiles
reach the boundary x̄2⊥ = 0, leading to a change in the shape of the profiles
(see Fig. 3 and Appendix E).

(2) (i) We have discussed the dynamical effects of an external
field h(x = (x‖, x⊥), t) (conjugate to the order parameter) on the
fluctuation-induced Casimir force Fl(r )(x‖, τ, L , t, {h(x, t)}) acting at
the point x‖ on the left and right confining walls. Its scaling

behavior is given by Fl(r )(x‖, τ > 0, L , t, {h(x, t)}) = L−d F
(dy)
l(r ) (x̄‖ =

x‖/L , L̄, t̄, {(L/ξ0)βδ/ν[h(x̄, t̄)/h0]}) (see also Eq. (100)). Within Gaussian
approximation we have provided the expressions for the scaling function
F

(dy)
l for two specific instances of external field: (W) h(x, t) = hW δ(x⊥ −

x1⊥)δ(t − t1) and (P) h(x, t) = h Pδ(x‖ − x1‖)δ(x⊥ − x1⊥)δ(t − t1). In both

cases F
(dy)
l is the sum [Eqs. (107) and (113)] of the static Casimir force

F (st) corresponding to the ordinary-ordinary surface universality class
considered here, and a dynamic term which is quadratic in the scaling vari-
ables ĥW,P [see Eqs. (108) and (114)] proportional to the amplitudes hW,P

of the external field. In particular we focused on the force at Tc,b where
F (st) = (d − 1)� < 0 [Eq. (101)]. For both cases W and P we have studied
as function of time the maximum AW,P

� of the field-induced contribution

[F
(dy)
l − F (st)]/ĥ2

W,P .
(ii) It turns out that AW

� is attained at t̄ = t̄I (x̄1⊥) discussed in the
previous point (i). Figure 4 shows the dependence of AW

� on the normal
distance x̄1⊥ at which the perturbation has been applied (see Appendix F2).
Figure 5 illustrates the time dependence of the normalized part of the
field-induced Casimir force F W

� (x̄1⊥, t̄ ) = [F
(dy)
l − F (st)]/[ĥ2

W AW
� (x̄1⊥)]

which decays ∼ e−2π2 t̄ .
(iii) AP

� is attained at t̄ = t̄M (δx‖, x̄1⊥) (Fig. 6) which depends
additionally on the scaled lateral distance δx̄‖ ≡ (x‖ − x1‖)/L between
the action of the force and the epicenter of the perturbation. The max-
imum of the force on the walls spreads with an asymptotically con-
stant radial velocity which decreases with the film thickness (Eq. (117)).
The force decreases monotonically for increasing lateral distances |δx̄‖|.
Figures 7 and 8 show the dependence of the corresponding maximum
AP

�(δx‖, x̄1⊥) (attained at t̄ = t̄M (δx‖, x̄1⊥)) on |δx̄‖| and x̄1⊥. The time de-
pendence of the normalized part of the Casimir force F P

�(δx̄‖, x̄1⊥, t̄ ) =
[F

(dy)
l − F (st)]/[ĥ2

P AP
�(δx̄‖, x̄1⊥)] is reported in Fig. 9; it decays

∼ t̄−(d−1)e−2π2 t̄ .
(3) We have computed the universal scaling function C̄

(0)
+ of the dynamical

two-point correlation function [see the previous point (1)] within Gaussian
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approximation. In Fig. 10 the time evolution of C̄
(0)
+ [see Eq. (122)] for

p̄ = 0 and T = Tc,b is shown for different values of the scaling variables
x̄i⊥ and t̄ . Figure 11 refers, instead, to the cases in which t̄0 = 1/(p̄2 + L̄2)
is finite, i.e., if T > Tc,b or p �= 0.

(4) (i) In view of the possibility to probe the spatial structure of
correlations by means of neutron or X-rays scattering under graz-
ing incidence, we have investigated the behavior of the frequency-
and momentum-dependent correlation function in planes parallel
to the surface of the film, i.e., of C(p, x1⊥ = x⊥, x2⊥ = x⊥, ω) =
ô

±
C (L/ξ±

0 )1−η+zC ±(p̄, x̄⊥, x̄⊥, ω̄ = ωT ±
0 (L/ξ±

0 )z, L̄) [see Eq. (44)].
(ii) Near the walls the surface behavior C+(p̄, x̄⊥ → 0, x̄⊥ →

0, ω̄, L̄) = x̄2(β1−β)/ν
⊥ C W (p̄, ω̄, L̄) [see Eq. (63)] is recovered. The vari-

ous asymptotic behaviors of C W have been discussed in Subsection 4.1
[see Eqs. (64)–(71) and (132)–(134),(137)]. Within Gaussian approxima-
tion the scaling function C

(0)
W is shown and discussed Figs. 12 and 13. In

contrast to the semi-infinite geometry, in films C
(0)
W attains a finite value

at the origin of the (ξ−1, p, ω)-space which diverges for L → ∞.
(iii) The correlation function in the middle of the film is char-

acterized by the scaling function CI (p̄, ω̄, L̄) ≡ C+(p̄, 1/2, 1/2, ω̄, L̄). Its
asymptotic behaviors are discussed in Subsection 4.1 [see Eqs. (73)–(80)
and (141)–(143),(145)]. Figures 14 and 15 show the shape of the scaling
function C

(0)
I along the axes of the (ξ−1, p, ω)-space.

(iv) Comparing the scaling functions C
(0)
W and C

(0)
I it turns out that,

although their shapes are similar, the latter exhibits more rapid algebraic
decays for L̄ , p̄, ω̄ → ∞.

(5) (i) We have considered the nonlinear relaxation from an initially ordered
state by solving numerically the evolution equation for the scaled order pa-
rameter profile m̄(x̄, t̄ ) [see Eqs. (149) and (150)], which is proportional to
the time-dependent mean value of the order parameter 〈ϕ(x, t)〉 across the
film. In particular we have analyzed the relaxation at the bulk critical point
T = Tc,b from an initial profile that is laterally constant and has a symmet-
ric shape in the transverse direction which fulfills the Dirichlet boundary
conditions. The universal aspects of the relaxation process are independent
of the actual shape of the initial profile. In view of this symmetry the scaled
order parameter profile m̄(x̄, t̄) depends only on x̄⊥ and t̄ .

(ii) In Fig. 16 the late stage of the relaxation of the order param-
eter is shown as a function of t̄ for various values of x̄⊥. For all x̄⊥,
m̄(x̄⊥, t̄ → ∞) displays an exponential decay due to the critical point shift
in the film geometry. On the other hand, during the early stage of re-
laxation, i.e., for t̄ <∼ 0.1, a crossover between an algebraic surface- and
bulk-like behavior clearly emerges (see Fig. 17). Close to the surface
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one observes m̄(x̄⊥, t̄ ) ∼ t̄−β1/(νz) (β1/(νz) = 1 within mean-field theory),
whereas upon moving inside the film m̄(x̄⊥, t̄ ) ∼ t̄−β/(νz) (β/(νz) = 1/2
within mean-field theory). This crossover is clearly detected by the time de-
pendence of the effective exponent κ(x̄⊥, t̄ ) ≡ −∂ log m̄(x̄⊥, t̄)/∂ t̄ shown
in Fig. 18. We have also defined (Eq. (156)) and studied (Fig. 19) the
typical time t̄c,bs(x̄⊥) at which the crossover from the bulk to the surface
behavior takes place for a given distance x̄⊥ from the near wall, and that
one for the crossover to the ultimate exponential decay t̄c,e(x̄⊥) (Eq. (157)
and Fig. 20).

(iii) Thus the nonlinear relaxation of the order parameter in film
geometry is characterized by a cascade of four clearly identifyable, succes-
sive decay modes: nonuniversal initial relaxation dominated by the initial
profile, bulk-like power-law decay ∼ t−β/νz , surface-like power-law decay
∼ t−β1/νz , and exponential decay ∼ exp(−π2 t̄). The initial relaxation lasts,
in the present case, up to t̄ <∼ 10−5 and the exponential decay prevails for
t̄ >∼ 10−1. The crossover time between the two power laws depends on the
distance of the point of observation from the near wall. Beyond MFT the
scenario is even richer if the relaxation process starts with a (genericly)
finite value of the order parameter m̄0(x̄). In fact m̄0(x̄) introduces an addi-
tional time scale t0 ∼ T0(m0/m0)−1/(θ ′+β/νz),(77) where θ ′ is the so-called
initial-slip exponent such that, for t ≤ t0 (but t sufficiently large to avoid
the non-universal initial behavior), one observes an initial increase of the
order parameter m(x̄, t̄) ∼ m0(x̄)(t/t0)θ

′
. For t � t0 a crossover towards

the previously mentioned cascade of decay modes takes place. On the
other hand, θ ′ at the surface (θ ′

s) differs from θ ′ in the bulk (θ ′
b) such that

θ ′
s = θ ′

b − (β1 − β)/νz.(78) Accordingly one expects, upon increasing the
distance from the confining walls, the following possible sequences of re-
laxation processes: (1) m increases ∼ tθ ′

s , reaching a maximum after which
it decreases first algebraically ∼ t−β1/νz and then exponentially. In this case
the displayed behavior is always surface-like. (2) m first increases ∼ tθ ′

b and
then ∼ tθ ′

s , reaching a maximum after which it first decreases algebraically
∼ t−β1/νz and then exponentially. The crossover between bulk-like and
surface-like behavior takes place during the initial increase of the order
parameter. (3) m first increases ∼ tθ ′

b , reaching a maximum after which
it decreases algebraically first ∼ t−β/νz , then ∼ t−β1/νz , and finally expo-
nentially. In this case the crossover takes place during the later stage of
relaxation, characterized by an algebraically decreasing order parameter.
(4) m first increases ∼ tθ ′

b , reaching a maximum after which it decreases
algebraically ∼ t−β/νz and then exponentially. Monte Carlo simulations
and analytical computations should be able to disclose this rich scenario
of phenomena.
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APPENDIX A: UNIVERSAL DYNAMIC AMPLITUDE RATIOS

In this appendix we determine the universal amplitude ratio T +
0 /T −

0 as in-
troduced in Sec. 2. We consider the model described in Sec. 3 in the absence of
any confining wall (bulk behavior) and for the specific case of a one-component
field (i.e., Ising universality class, N = 1). The linear response of this model in
the presence of a finite external field h, and thus of a non-vanishing magnetization
m, has been studied in Refs. 60 and 61 within a loop expansion up to one loop.
The results obtained there allow one to compute the relaxation time of the system
(a) in the high-temperature phase (τ > 0, with h = 0 and thus m = 0) and (b)
in the low-temperature phase (τ < 0 and thus m = M0 �= 0 also for h = 0). In
particular the value of the spontaneous magnetization M0 for τ < 0 and h = 0 can
be determined from the equation of state reported in Eq. (5.1) of Ref. 60:

M0(τ < 0) =
√

3

u∗ µ(d−2)/2(−2τ )β
[
1 + ε

6
+ O(ε2)

]
(163)

where ε = 4 − d, β = (1 − ε/3)/2 + O(ε2) is the critical exponent of the sponta-
neous magnetization M0, τ = (T − Tc,b)/Tc,b, µ is a momentum scale (see below),
and u∗ is the fixed-point value of the renormalized coupling constant (whose actual
value is irrelevant for the rest of the computation). The true correlation length in
the high-temperature phase is given by

ξ (τ → 0+) = µ−1τ−ν
[
1 + ε

12
+ O(ε2)

]
(164)

with ν = (1 + ε/6)/2 + O(ε2). Accordingly, µ can be expressed in terms of the
nonuniversal amplitude ξ+

0 as µ = (ξ+
0 )−1[1 + ε/12 + O(ε2)].

The linear response function can be computed from Eq. (5.2) in Ref. 60,
taking into account the different values of M0 in the cases (a) (M0 = 0) and (b)
(see Eq. (163)). This equation expresses the deviation m1(t) of the magnetization
from the constant value M0 in terms of the small magnetic field h1(t) that gives
rise to it, and thus provides an expression for the linear susceptibility χ defined
through

m1(t) =
∫ t

−∞
ds χ (t − s)h1(s). (165)

It is straightforward to express the Fourier transform χ̂±(ω) = ∫ +∞
0 dt eiωtχ±(t)

of χ±(t) for τ ≶ 0 as

χ̂−1
+ (ω) = ω+

0

[
−i

ω

ω+
0

+ 1 − ε

6

]
+ O(ε2) (166)
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and

χ̂−1
− (ω) = ω−

0

[
−i

ω

ω−
0

+ 1 + ε

3
+ ε

2
FR(iω/ω−

0 )

]
+ O(ε2), (167)

where

ω+
0 ≡ �µ2τ νz (168)

and

ω−
0 ≡ �µ2(−2τ )νz, (169)

with z = 2 + O(ε2) and

FR(x) =
∫ ∞

0
du

1 + u − eu

u2
e−2u/x = −1 +

(
1 − 2

x

)
ln
(

1 − x

2

)
(170)

which has a branch cut on the real axis for x > 2. The kinetic coefficient �

in Eqs. (168) and (169) can be expressed in terms of the non-universal am-
plitudes T +

0,ac or T +
0,exp, and ξ+

0 through, c.f., Eq. (174) or (176). For instance,

� = (ξ+
0,exp)2/T +

0,exp[1 + O(ε2)].
As it is the case for the (bulk) correlation length, there are different possible

definitions of the relaxation time TR . For example it can be defined as the inverse
characteristic frequency (see, e.g., Eq. (3.17) in Ref. 2), i.e.,

TR,ac(τ ) = i

χ̂−1(ω = 0)

∂χ̂−1(ω)

∂ω

∣∣∣∣
ω=0

(171)

where the subscript ac stands for “autocorrelation.” Indeed using the FDT (see,
e.g., Eq. (34)) one can show that TR,ac coincides with the so-called integrated
autocorrelation time of the magnetization:

TR,ac =
∫ ∞

0
dt

CM (t)

CM (0)
, (172)

where CM (t) is the two-time dynamic (auto)correlation function of thermal equi-
librium fluctuations (around M0) of the magnetization; it is given via the FDT
(see, e.g., Eq. (32)) by CM (t) = ∫ +∞

|t | ds χ (s). Another possible definition of TR

introduces the “true” relaxation time determined by the position of the frequency
pole in χ (ω) closest to the real axis:

χ̂−1(ω = −iT −1
R,exp(τ )) = 0. (173)

From Eq. (173) it follows that TR,exp governs the long-time exponential decay
∼ exp(−t/TR,exp) of the correlation and linear response function away from Tc.
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Using the previous expressions one finds that

TR,ac =
{

(ω+
0 )−1
(
1 + 1

6ε
)+ O(ε2), τ > 0,

(ω−
0 )−1
(
1 − 5

24ε
)+ O(ε2), τ < 0,

(174)

which yields the universal amplitude ratio

T +
0,ac

T −
0,ac

= 2νz

(
1 + 3

8
ε

)
+ O(ε2). (175)

Instead, for TR,exp one finds

TR,exp =
{

(ω+
0 )−1
(
1 + 1

6ε
)+ O(ε2), τ > 0,

(ω−
0 )−1
[
1 + ( 1

6 − ln 2
2 )ε
]+ O(ε2), τ < 0,

(176)

so that the corresponding universal amplitude ratio is given by

T +
0,exp

T −
0,exp

= 2νz

(
1 + ln 2

2
ε

)
+ O(ε2). (177)

In Ref. 49 the purely relaxational dynamics of the Ising model has been
studied both analytically and numerically (in three dimensions). In particular the
generalizations of TR,ac and TR,exp to the case of a non-vanishing wavevector have
been considered for a generic point in the (τ, M0)-plane, and their universal scaling
functions have been computed (see Eqs. (15), (16), and (19) therein). These results
provide predictions also for the universal ratios T +

0,exp/T +
0,ac and T −

0,exp/T −
0,ac. Using

the notations of Ref. 49, T +
0,exp/T +

0,ac = Texp(0; ∞) = 1 + O(ε2) and T −
0,exp/T −

0,ac =
Texp(0; −1) = 1 + (3/8 − ln 2/2)ε + O(ε2), respectively. It is straightforward to
check that the results reported in Eqs. (174) and (176) are in accordance with these
predictions.

APPENDIX B: STATIC CORRELATION FUNCTION

The static (i.e., equal-time) correlation function C (0)
st can be obtained from

Eq. (30) by integrating C (0)(qn, ω) over ω (see Eqs. (24) and (29)):

C (0)
st (p, x1⊥, x2⊥) =

∞∑
n=1

�n(x1⊥; L)�n(x2⊥; L)
1

q2
n + r0

. (178)

Using the relations (see Eq. (18))

�n(x1; L)�n(x2; L) = 1

L

{
cos
[πn

L
(x1 − x2)

]
− cos

[πn

L
(x1 + x2)

]}
, (179)
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q2
n = p2 + π2n2/L2, and the identity (see, e.g., §5.4.5-1 in Ref. 69)

∞∑
n=1

cos(πnz)

π2n2 + α2
=
{

1

2α

cosh[α(|z| − 1)]

sinh α
− 1

2α2

}
, for − 2 < z ≤ 2,

(180)
(outside the range |z| ≤ 2 this expression has to be extended periodically in z with
period 2), one finds

C (0)
st (p, x1⊥, x2⊥) = 1

2a

cosh[a(|x1⊥ − x2⊥| − L)] − cosh[a(x1⊥ + x2⊥ − L)]

sinh(aL)
(181)

where a2 ≡ p2 + ξ−2 (see footnote 8). By applying addition formulae for hyper-
bolic functions, Eq. (181) can be expressed as

C (0)
st (p, x1⊥, x2⊥) = L

sinh[aL(x<
⊥/L)] sinh[aL(1 − x>

⊥/L)]

aL sinh(aL)
, (182)

where x>
⊥ = max{x1⊥, x2⊥} = (x1⊥ + x2⊥ + |x1⊥ − x2⊥|)/2 and x<

⊥ =
min{x1⊥, x2⊥} = (x1⊥ + x2⊥ − |x1⊥ − x2⊥|)/2, in agreement with Eq. (B4)
in Ref. (53) (and with Eq. (4.1) of Ref. 6 in the case c0 = +∞). This result
can also be found directly from Eq. (95) by using the FDT (see Eq. (35)):
C (0)

st (p, x1⊥, x2⊥) = C (0)(p, x1⊥, x2⊥, t = 0) = R(0)(p, x1⊥, x2⊥, ω = 0).

APPENDIX C: RESPONSE FUNCTION AND ITS ASYMPTOTIC

TIME DEPENDENCE

With a view of the scaling function � for the response function R(0) (see
Eqs. (82) and (83)) we consider the sum

∞∑
n=1

�n(x1; L)�n(x2; L)e−�(πn/L)2t ≡ 1

L
�(x1/L , x2/L ,�t/L2) (183)

with the eigenfunctions �n(x ; L) defined in Eq. (18). Using Eq. (179), Eq. (183)
reduces to the evaluation of expressions of the form

∞∑
n=1

cos(πnµ)e−π2n2τ = −1

2
+ 1

2

+∞∑
n=−∞

eiπnµ−π2n2τ (184)

which can be expressed, according to standard definitions (see, e.g., §16.27.3 in
Ref. 70), in terms of Jacobi’s theta function

ϑ3(z, q) =
+∞∑

n=−∞
qn2

e2niz (185)
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so that with t̄ = �t/L2 (see Eq. (84)) and x̄i = xi/L

�(x̄1, x̄2, t̄ ) = 1

2

[
ϑ3(π

x̄1 − x̄2

2
, e−π2 t̄ ) − ϑ3(π

x̄1 + x̄2

2
, e−π2 t̄ )

]
. (186)

By using Poisson’s resummation formula [i.e.,
∑∞

n=−∞ e2π inx =∑∞
n=−∞ δ(x −

n)] we obtain

ϑ3(π x̄, e−π2 t̄ ) = 1√
π t̄

+∞∑
n=−∞

e−(n−x̄)2/t̄ (187)

so that

�(x̄1, x̄2, t̄ ) = 1√
4π t̄

{
e−(x̄1−x̄2)2/(4t̄ ) − e−(x̄1+x̄2)2/(4t̄ )

+
∞∑

n=1

[
e−( x̄1−x̄2

2 −n)2/t̄ + e−( x̄1−x̄2
2 +n)2/t̄

− e−( x̄1+x̄2
2 −n)2/t̄ − e−( x̄1+x̄2

2 +n)2/t̄
]}

. (188)

This expression is useful for discussing the semi-infinite limit of the response
function (see Eq. (86)).

The long-time limit t̄ = �t/L2 → ∞ of Eq. (183) follows from

ϑ3(π x̄, e−π2 t̄ ) = 1 + 2e−π2 t̄ cos(2π x̄) + O(e−4π2 t̄ ) (189)

so that

�(x̄1, x̄2, t̄ → ∞) = e−π2 t̄ [cos π (x̄1 − x̄2) − cos π (x̄1 + x̄2)] + O(e−4π2 t̄ )

(190)

as expected also from Eq. (183) because in that limit the sum in Eq. (183) is
dominated by its first term so that

�(x̄1, x̄2, t̄ → ∞) = L�1(x1; L)�1(x2; L)e−π2 t̄ + O(e−4π2 t̄ ). (191)

APPENDIX D: ANALYTIC EXPRESSION FOR THE MEAN-FIELD

ORDER PARAMETER PROFILE

The rescaled mean-field order parameter profile m̄∞(x̄) is the stationary
solution of Eq. (150):

[−�x̄ + τ̄ + m̄2
∞(x̄)]m̄∞(x̄) = 0 (192)
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with the Dirichlet boundary conditions m̄∞(x̄B) = 0. Thus m̄∞(x̄) is an extremum
of the functional (8), which can be rewritten as

H[m] = Ld−4m2
0ξ

2
0

∫
V̄

dd x̄

[
1

2
(∇x̄m̄(x̄))2 + 1

2
τ̄ m̄(x̄)2 + 1

4
m̄(x̄)4

]
(193)

by taking into account Eqs. (84) and (149), the definitions x̄ = x/L , τ̄ = (L/ξ )2 =
L̄2 for τ > 0, τ̄ = −1/2(L/ξ )2 = −L̄2/2 for τ < 0, and V̄ = R

d−1 × [0, 1] as
well as m̄(x̄B) = 0. We recall that, within mean-field theory, ξ (τ → 0+) = r−1/2

0
whereas ξ (τ → 0−) = (−2r0)−1/2 (Eq. (8)); in the main text we use also the
abbreviation L/ξ = L̄ . Here and in the following ξ means ξ− for τ < 0 and
ξ+ for τ > 0. In view of the translational symmetry in all directions parallel
to the confining walls, finding the equilibrium profile reduces to solving a one-
dimensional differential equation for ψ(x̄⊥) = m̄(x̄) where x̄ = (x̄‖, x̄⊥):

−ψ ′′(x̄⊥) + τ̄ψ(x̄⊥) + ψ3(x̄⊥) = 0,

ψ(0) = ψ(1) = 0, (194)

with the symmetry ψ(x̄⊥) = ψ(1 − x̄⊥) so that for regular solutions ψ ′(1/2) = 0.
Accordingly a set of equivalent boundary conditions for Eq. (194) is ψ(0) = 0
and ψ ′(1/2) = 0. Equation (194) has always the trivial solution ψ(x̄⊥) ≡ 0. Note
that Eq. (194) describes the one-dimensional closed motion of a particle with
coordinate ψ in a potential V (ψ) = −τ̄ψ2/2 − ψ4/4 as a function of “time” x̄⊥.
Using this analogy one can show that the non-trivial solution ψ(x̄⊥) of Eq. (194) is
bounded by the non-trivial solution ψ̄ of Eq. (194) with free boundaries resembling
the bulk solution,

ψ̄ =
{

0 for τ̄ > 0,√−τ̄ for τ̄ ≤ 0,
(195)

in the sense that |ψ(x̄⊥)| ≤ ψ̄ .9 In view of this, in the following we consider τ̄ < 0.
Equation (194) can be integrated once by using the boundary condition ψ(0) = 0:

ψ ′2(x̄⊥) = ψ ′2(0) + τ̄ψ2(x̄⊥) + 1

2
ψ4(x̄⊥). (196)

The solution of Eq. (196) (together with the boundary condition ψ(0) = 0) depends
on ψ ′(0) which has to be determined as a function of τ̄ in order to fulfill the
second boundary condition ψ ′(1/2) = 0. It is convenient to introduce the scale

9 For τ̄ < 0, ψ̄ is the position of the maximum of V (ψ) for ψ > 0. A particle starting from the point
ψ = 0 at the “time” x̄⊥ = 0 with ψ ′(x̄⊥) > 0 cannot perform a closed motion (and then return to
the starting point at the “time” x̄⊥ = 1) if its initial kinetic energy is large enough to overcome the
potential barrier V (ψ̄), which allows for ψ > ψ̄ . As a consequence, for a closed motion one has
|ψ | ≤ ψ̄ .
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transformation ψ(x̄⊥) = √
2kζ σ (ζ x̄⊥), with σ (0) = 0 and σ ′(0) = 1. In terms of

σ (w = ζ x̄⊥) Eq. (196) turns into

σ ′2 = (1 − σ 2)(1 − k2σ 2), (197)

where

−τ̄ = ζ 2(k2 + 1). (198)

The two parameters k > 0 and ζ > 0 just introduced have to be determined as
a function of τ̄ in such a way that σ ′(ζ/2) = 0, corresponding to the condition
ψ ′(1/2) = √

2kζ 2σ ′(ζ/2) = 0, and that Eq. (198) is satisfied. Equation (197) is
solved by the Jacobian elliptic integral of the first kind with modulus k (assuming
that ψ ′(x̄⊥) = √

2kζ 2σ ′(ζ x̄⊥) > 0 for 0 < x̄⊥ < 1/2),∫ σ (w)

0
ds

1√
(1 − s2)(1 − k2s2)

= w, (199)

and thus (see, e.g., 8.144.1 in Ref. 71)

σ (w) = sn(w; k). (200)

The parameters k and ζ are related via Eq. (198). They are fixed by impos-
ing the boundary condition σ ′(ζ/2) = 0. Thus Eq. (197) renders two possible
values: σ (ζ/2) = 1 and σ (ζ/2) = 1/k2. On the other hand, Eq. (195) implies
that ψ(1/2) = √

τ̄ = √
2kζ σ (ζ/2) ≤ ψ̄ = ζ

√
k2 + 1 (where we used Eq. (198)),

so that σ (ζ/2) ≤
√

(k2 + 1)/(2k2), i.e., (a) σ (ζ/2) = 1 for 0 < k < 1 and (b)
σ (ζ/2) = 1/k2 for k > 1. We first consider case (a). Using σ (ζ/2) = 1 in Eq. (199)
one finds the following relation between ζ and k (see, e.g., 8.111.2 and 8.112.1 in
Ref. 71):

K (k) = ζ

2
, (201)

where K (k) is the complete elliptic integral of the first kind. This allows one to
replace the variable ζ in Eq. (198):

−τ̄ = [2K (k)]2(k2 + 1). (202)

This is an implicit equation k = k(τ̄ ) for the modulus in terms of the physical
variable τ̄ = −1/2(L/ξ )2 (as defined for τ̄ < 0). Thus the solution of Eqs. (192)
and (194) is given by

ψ(x̄⊥) = 2
√

2kK (k) sn(2K (k)x̄⊥; k). (203)

Since K (k) is a monotonicly increasing function with K (0) = π/2, one has
[2K (k)]2(k2 + 1)π2 and therefore there is a non-trivial solution ψ(x̄⊥) �= 0 only
for

τ̄ ≤ −π2. (204)
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This determines the well-known mean-field critical point shift in the film geometry
with Dirichlet boundary conditions on both sides(46,67,72,73) (ν = 1/2):

τc = −π2

(
ξ−

0

L

)1/ν

. (205)

The discussion of case (b) proceeds accordingly. Using the property sn(ku; 1/k) =
k sn(u; k) (see, e.g., formula 106.01 in Ref. 74) one finds that the solution for case
(b) is the same as for case (a) provided the modulus k is replaced by 1/k.

These results can also be obtained from the findings in Ref. 68, in which
the mean-field order parameter profile is analytically determined for the case of
(+,+) and (+,−) boundary conditions (see Ref. 68 for details). Alternatively,
Eq. (194) can be integrated so that

ψ ′2(x̄⊥) = τ̄ψ2(x̄⊥) + 1

2
ψ4(x̄⊥) − τ̄ψ2(1/2) − 1

2
ψ4(1/2), (206)

using ψ ′(1/2) = 0 which is valid both for Dirchlet-Dirichlet and (+,+) boundary
conditions. The function u(x̄⊥) defined as

u(x̄⊥) = A

ψ(x̄⊥)
(207)

satisfies Eq. (206), provided that A is chosen according to

A2

2
= −τ̄ψ2(1/2) − 1

2
ψ4(1/2), (208)

which is equivalent to −τ̄u2(1/2) − 1/2u4(1/2) = A2/2. Therefore both ψ(x̄⊥)
and u(x̄⊥) solve Eq. (206). If ψ satisfies (+,+) boundary conditions, then u satis-
fies Dirichlet-Dirichlet boundary conditions and vice versa. Thus it is possible to
take advantage of the result reported in Ref. 68 for the former case in order to solve
the latter we are presently interested in. (Note that the normalizations used here
are different from those used in Ref. 68, see Eq. (194) here and Eq. (A3) therein.)
In Ref. 68 two different parameterizations are provided for the solution denoted as
m+,+: one for τ L2 > −π2 in Eq. (A13) therein, and the other for τ L2 ≤ −π2 in
Eq. (A15) therein. One can see that in the former case the value of A2 is negative,
i.e., the corresponding solution for Dirichlet-Dirichlet boundary conditions is not
real, and one is left only with the trivial solution which is identically zero. Instead,
in the latter case, taking into account the different normalizations,

ψ+,+(z) = 2
√

2K (k)
1

sn(2K (k)z; k)
, (209)

where k is determined according to Eq. (202). Thus A2 = 64k2[K (k)]4 and the
corresponding function uD,D(z) = A/ψ+,+(z) is identical to the solution ψ(z)
given in Eq. (203).
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From Eqs. (203) and (202) it is possible to recover the result for the mean-field
profile in the semi-infinite geometry by considering the limit of large L for fixed
ξ− and x⊥ which corresponds to |τ̄ | � 1, x̄⊥ � 1. For |τ̄ | � 1 one has k → 1−

and thus one can use the approximation (see, e.g., formula 17.3.26 in Ref. 70)

K (k) = −1

2
ln

(
1 − k2

16

)
(1 + O(1 − k)). (210)

Given that sn(u, 1) = tanh u (see, e.g., formula 127.02 in Ref. 74) one easily finds
at leading order

ψ(x̄⊥) � ψ̄ tanh

(√−τ̄

2
x̄⊥

)
for x̄⊥ � 1, |τ̄ | � 1. (211)

Using Eqs. (149) and (195) and the fact that within mean-field theory ξ+
0 /ξ−

0 =√
2, one can express the profile as

m(x, τ ) = m0
ξ−

0

ξ
tanh

(
1

2

x⊥
ξ

)
−→

x⊥→∞ m0τ
1/2(1 − 2e−x⊥/ξ−), (212)

where here ξ ≡ ξ (τ < 0) = ξ−. This expression agrees with the well-known result
for the semi-infinite geometry.(75,76) In Fig. 21 the order parameter profile ψ̄(x̄⊥)/ψ̄
(normalized to the corresponding bulk value ψ̄ , see Eq. (195)) is shown for
some values of τ̄ . The comparison with the profile in the semi-infinite geometry
(Eq. (211)) is also shown.

From Fig. 21 one can infer that for τ̄ → −∞ the order parameter profile
in the middle of the film x̄⊥ = 1/2 approaches rapidly the bulk value. Indeed,
defining δψ ≡ ψ(x̄⊥ = 1/2) − ψ̄ one finds

−δψ

ψ̄
= 1 −

√
2k√

1 + k2
, (213)

where k is determined by Eq. (202). Using Eq. (210) one finds that for |τ̄ | � 1
(i.e., in the limit of large film thickness L at a fixed temperature)

−δψ

ψ̄
= 4e−√−τ̄ /2(1 + O(e−√−τ̄ /2)), (214)

i.e., in the middle of the film the deviation of the order parameter profile from the
bulk value due to the distant confining walls decays ∼ exp[−L/(2ξ )].

APPENDIX E: RELAXATION OF THE RESPONSE FUNCTION

In the main text t̄I = FtI (x̄1⊥) has been defined as the reduced time at which
the inflection point of the scaling function �(x̄1⊥, x̄2⊥, t̄ ) for the mean-field re-
sponse function (as a function of x̄2⊥, see Fig. 2) close to x̄⊥ = 0 disappears. The
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Fig. 21. Order parameter profile ψ(x̄⊥) (normalized to the corresponding bulk value ψ̄ , see Eq. (195))
across the film, for some values of τ̄ = −1/2(L/ξ )2: −10 (a), −15 (b), −20 (c), −40 (d), −80 (e). The
order parameter vanishes for τ̄ ≥ −π2 � −9.87 (Eq. (204)). The dashed lines for x̄⊥ ≤ 1/2 represent
the corresponding profiles (normalized to the bulk value ψ̄) in the semi-infinite geometry (given by
Eq. (211)) in which the order parameter vanishes only for τ̄0. In the cases (d) and (e) these provide
good approximations to the actual order parameter profile for x̄⊥ ≤ 1/2; for (e) the differences are
barely visible.

position of this point x̄ I
2⊥ = X I (x̄1⊥, t̄ ) is determined by the condition

�(0,2)(x̄1⊥, x̄ I
2⊥, t̄ ) = 0, (215)

where, here and in the following, we use the notation �(n,m)(x̄1⊥, x̄2⊥, t̄ ) ≡
∂n

x̄1⊥∂m
x̄2⊥�(x̄1⊥, x̄2⊥, t̄ ). Accordingly, t̄I is given by the time at which the inflection

point reaches the surface at x̄⊥ = 0, i.e., it is implicitly determined by the condition
X I (x̄1⊥, t̄I ) = 0. This provides an equation for the function FtI (see Eq. (92)):

X I (x̄1⊥, FtI (x̄1⊥)) = 0. (216)

The function shown in Fig. 3 has been determined by solving numerically
Eqs. (215) and (216). Here we determine analytically the behavior of FtI (x̄1⊥)
for x̄1⊥ → 0 and x̄1⊥ → 1. From Eq. (186) it follows that

�(x̄1⊥, x̄2⊥, t̄ ) = �(x̄2⊥, x̄1⊥, t̄ ), �(x̄1⊥, x̄2⊥, t̄ ) = −�(x̄1⊥,−x̄2⊥, t̄ ),
(217)

and

�(x̄1⊥ = 0, x̄2⊥, t̄ ) = �(x̄1⊥ = 1, x̄2⊥, t̄ ) = 0. (218)

Accordingly �(0,m)(x̄1⊥ = 0, x̄2⊥, t̄ ) = �(0,m)(x̄1⊥ = 1, x̄2⊥, t̄ ) = 0 and
�(0,2m)(x̄1⊥, x̄2⊥ = 0, t̄ ) = 0. (Eq. (217) implies that � is an odd function
of x̄2⊥ if analytically continued to negative values of x̄2⊥ by using Eq. (186).)
Therefore Eq. (215) is always trivially satisfied for x̄2⊥ = 0, whatever the values
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of x̄1⊥ and t̄ are. The function FtI is given by the nontrivial solution of

�(0,2)(x̄1⊥, x̄2⊥ → 0, FtI (x̄1⊥)) = 0. (219)

This solution can be found by considering the series expansion of �(0,2) for
x̄2⊥ → 0, i.e.,

�(0,2)(x̄1⊥, x̄2⊥ → 0, FtI (x̄1⊥)) = �(0,3)(x̄1⊥, 0, FtI (x̄1⊥)) x̄2⊥ + O(x̄2
2⊥). (220)

Therefore t̄I = FtI (x̄1⊥) is determined by the condition

�(0,3)(x̄1⊥, 0, t̄I ) = 0. (221)

Let us consider the limiting case x̄1⊥ → 0, i.e., the behavior of FtI (y → 0).
As discussed in Subsec. 4.2 (see Eq. (94)), in this limit one expects tI → 0. Using
Eqs. (186) and (187), one realizes that in the limit t̄I → 0 the terms of the sums
with n = 0 are the leading contributions to �(0,3)(x̄1⊥, 0, t̄I ). (The terms with
n �= 0 give rise to exponentially small corrections.) Thus Eq. (221) reduces to

(x̄2
1⊥ − 6t̄I )x̄1⊥ = 0, (222)

that, apart from the expected trivial solution x̄1⊥ = 0, is solved by

tI = FtI (x̄1⊥ → 0) = x̄2
1⊥
6

. (223)

The full numerical solution shown in Fig. 3 is in accordance with this analytic
result.

We now consider the case x̄1⊥ → 1, i.e., FtI (1). Expressing Eq. (221) as
before, one realizes that the leading contributions to �(0,3)(x̄1⊥ → 1, 0, t̄I ) stem
from the terms in the sums with n = 0, 1 (Eqs. (186) and (187)). Indeed Fig. 3
shows that t̄I is significantly smaller than 1 also for x̄1⊥ = 1, allowing one to neglect
terms that are suppressed by a factor ∼ exp(−1/t̄I ) compared to the leading one.
This leads to

x̄1⊥
(
x̄2

1⊥ − 6t̄I

)− (2 − x̄1⊥)
[
(2 − x̄1⊥)2 − 6t̄I

]
exp

(
x̄1⊥ − 1

t̄I

)
= 0, (224)

which has the expected trivial solution x̄1⊥ = 1, whereas the nontrivial one for
x̄1⊥ → 1 is given by

t̄2
I − t̄I + 1

12
= 0, (225)

yielding

t̄I = FtI (x̄1⊥ = 1) � 1

2
− 1√

6
� 0.09176. (226)

This provides a very accurate approximation of the actual value FtI (1). Note that
the second solution of the quadratic Eq. (225) can be discarded because it is
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inconsistent with the assumption t̄I � 1, under which Eq. (225) has been derived.
The actual value of FtI (1) can be computed from Eq. (221) after having discarded
the trivial solution x̄1⊥ = 1. This can be done considering the expansion of �(0,3)

around x̄1⊥ = 1, retaining only the leading term. This yields the implicit equation

�(1,3)(1, 0, t̄I ) = 0. (227)

Here we do not report the corresponding expression that can be easily worked out.
The corresponding solution can be numerically determined and is given by

FtI (1) � 0.0917918. (228)

APPENDIX F: COMPUTATION OF THE CASIMIR FORCE

F.1. General Expression

According to Eq. (103) it is possible to compute the force exerted on the
confining walls in terms of the stress-tensor T⊥⊥. In order to determine the effect
of a time-dependent external field on this force we first note that according to
Eq. (12) within Gaussian approximation, due to 〈ϕ〉0 = 0 and 〈[ϕ]n[ϕ̃]m〉0 = 0 for
m > n, one has

〈ϕ(x1, t1)ϕ(x2, t2)〉h = 〈ϕ(x1, t1)ϕ(x2, t2)〉0

+
∫

dV ′dt ′dV ′′dt ′′ h(x′, t ′)h(x′′, t ′′)

×�2〈ϕ̃(x′, t ′)ϕ(x1, t1)〉0〈ϕ̃(x′′, t ′′)ϕ(x2, t2)〉0 (229)

(higher order terms in h are zero because n = 2) where 〈·〉h has been introduced
after Eq. (11). Using Eq. (229) one finds

〈T⊥⊥(x, t)〉h |x∈∂V = 1

2
∂x1⊥∂x2⊥〈ϕ(x1, t)ϕ(x2, t)〉h

∣∣
x1=x2=x∈∂V

= 〈T⊥⊥〉0|∂V

+ 1

2

[∫
dV ′dt ′ h(x′, t ′) ∂x⊥ R(0)(x′, t ′; x, t)|x∈∂V

]2

(230)

where the response function R is defined in Eq. (12). The previous equation
provides the expression for the force density Fl(r )(x‖) acting on the left (right)
plate (depending on which part of the two boundaries ∂V is used in Eq. (230))
for a general external field. The previous expression can be expressed in terms of
the corresponding dimensionless scaling variables (see Eqs. (43), (57), (85), (98),
and (105)):

F
(dy)(0)
l (L̄, t̄, {ĥ}) = F (st)(0)(0, L̄)
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+ 1

8

[ ∫ dd−1p̄

(2π )d−1
dx̄1⊥dt̄1 ĥ(p̄, x̄1⊥, t̄1)

× e−i p̄x̄2‖∂x̄2⊥R̄ (0)(p̄, x̄1⊥, x̄2⊥, t̄ − t̄1, L̄)|x̄2⊥=0

]2
(231)

where the scaling variable ĥ is defined by

ĥ(p̄, x̄1⊥, t̄1) ≡ ξ
(d+2)/2
0 (L/ξ0)βδ/ν L−(d−1)h(p̄/L , x̄1⊥L , t̄1T0(ξ0/L)−z) (232)

with

h(p, x⊥, t) =
∫

dd−1x‖ h(x‖, x⊥, t) eip·x‖ . (233)

ĥ is the analogue of h̄ introduced after Eq. (105). Note that the former carries,
compared to the latter, an extra factor L−(d−1), stemming from the Fourier trans-
form in the d − 1 parallel spatial directions. Moreover, within the Gaussian model
(g0 = 0) it is not possible to define, in accordance with Eq. (99), the scale factor
h0 for the external field h, whose engineering dimension ξ

−(d+2)/2
0 follows from

the Gaussian action.
Note that, according to Eq. (230), the dependence of the Casimir force on the

applied field is quadratic and therefore the effect of a sum of fields h1 + h2 is not
equal to the sum of the separate effects of each field.

F. 2. Specific Cases

In Subsection 4.3 we consider two different instances of externally ap-
plied fields: a perturbation h(x, t) = hW δ(x⊥ − x1⊥)δ(t − t1) which is spatially
constant in the plane x⊥ = x1⊥ parallel to the confining walls and a pertur-
bation h(x, t) = h Pδ(x‖ − x1‖)δ(x⊥ − x1⊥)δ(t − t1) that is localized at a point
x = (x1‖, x1⊥) within the film. In the following we present the details of the com-
putation of some relevant quantities determining the response to these external
fields.

F. 2. 1. Planar Perturbation

Here we discuss the asymptotic behaviors of the amplitude AW
� (x̄1⊥) defined

in Section 4.3 (see Eq. (111)), which determines the Casimir force maximum
(d − 1)� + ĥ2

W AW
� (x̄1⊥). In terms of the notation introduced after Eq. (215), AW

�

is given by

AW
� (x̄1⊥) = 1

2

[
�(0,1)(x̄1⊥, 0, t̄I (x̄1⊥))

]2
. (234)
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Using Eqs. (186) and (187) one finds an expression of �(0,1) which is suited to
discuss some asymptotic behaviors at short times:

�(0,1)(x̄1⊥, 0, t̄ ) = − 1√
π t̄3/2

+∞∑
n=−∞

(
n − x̄1⊥

2

)
exp

[
−1

t̄

(
n − x̄1⊥

2

)2
]

.

(235)
Accordingly,

�(0,1)(x̄1⊥ → 1, 0, t̄ ) = (1 − x̄1⊥)√
π t̄3/2

×
+∞∑

n=−∞

[
−1

2
+ (n − 1/2)2

t̄

]

× exp

[
− (n − 1/2)2

t̄

]
+ O((1 − x̄1⊥)2) (236)

and

�(0,1)(x̄1⊥ → 0, 0, t̄ ) = x̄1⊥
2
√

π t̄3/2

{
exp
[− x̄2

1⊥/(4t̄ )
]+ O(e−1/t̄ )

}
. (237)

(Note that the approximation provided by this expression deteriorates upon increas-
ing t̄ .) In Appendix E we found that, at leading orders, t̄I (x̄1⊥ → 1) = FtI (1) �
0.0918 and t̄I (x̄1⊥ → 0) = x̄2

1⊥/6. From Eqs. (234) and (236) one has

AW
� (x̄1⊥ → 1) = a1(1 − x̄1⊥)2 (238)

with

a1 = L1(t̄I (1)) � 17.535 (239)

and where

Ld (t̄ ) = 1

(4π t̄ )d−1

1

2π t̄3

{ +∞∑
n=−∞

[
−1

2
+ (n − 1/2)2

t̄

]
exp

[
− (n − 1/2)2

t̄

]}2

;

(240)
this function will be useful also for the discussion of the localized perturbation
below. In the opposite limit x̄1⊥ → 0 Eqs. (234) and (237) yield

AW
� (x̄1⊥ → 0) = K1/x̄4

1⊥ (241)

with

K1 � 0.427888, (242)

where we have introduced the constant

Kd = 1

2

[2(d + 2)]d+2

(4π )d
e−(d+2). (243)
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Moreover, the asymptotic expressions for �(0,1) in Eqs. (236) and (237) provide
the corresponding ones for the function F W

� (see Eq. (112)) because

F W
� (x̄1⊥, t̄ ) =

[
�(0,1)(x̄1⊥, 0, t̄ )

�(0,1)(x̄1⊥, 0, t̄I (x̄1⊥))

]2

. (244)

For x̄1⊥ → 1, Eq. (236) gives

F W
� (x̄1⊥ → 1, t̄ ) = L1(t̄ )

L1(t̄I (1))
, (245)

whereas, for x̄1⊥ → 0, Eq. (237) and t̄I (x̄1⊥ → 0) = x̄2
1⊥/6 render

F W
� (x̄1⊥ → 0, t̄ ) =

(e

s

)3
e−3/s, s = t̄/t̄I (x̄1⊥ → 0). (246)

These asymptotic behaviors are indicated in Fig. 5. Equation (115) allows one to
determine the long-time behavior of F W

� (x̄1⊥, t̄ ) for fixed x̄1⊥:

F W
� (x̄1⊥, t̄ → ∞) ∼ e−2π2 t̄ [1 + O(e−3π2 t̄ )], (247)

which clearly displays the expected exponential decay for t̄ � 1/(3π2).

F. 2. 2. Localized Perturbation

In Subsec. 4.3 we have introduced the amplitude AP
�(δx̄‖ = x‖ − x1‖, x̄1⊥)

associated with the response to a point-like field (see Eq. (120)):

AP
�(δx̄‖, x̄1⊥) = 1

2

e−(δx̄‖)2/[2t̄M (δx̄‖,x̄1⊥)]

[4π t̄M (δx̄‖, x̄1⊥)]d−1

[
�(0,1)(x̄1⊥, t̄M (δx̄‖, x̄1⊥))|x̄2⊥=0

]2
.

(248)
Here we discuss its asymptotic behavior for |δx̄‖| → 0. The typical time
t̄M (δx̄‖, x̄1⊥) when the effect of the perturbation attains its maximum at a point
with |δx̄‖| � 1 is expected to be of the same order as that in the case of a planar
perturbation at the same x̄1⊥, which is given by the function t̄I (x̄1⊥) shown in Fig. 3.
Accordingly, t̄M (δx̄‖ → 0, x̄1⊥) <∼ 0.1 and therefore, in Eq. (248) we can use the
expressions given in Eqs. (236) and (237) for �(0,1) in order to obtain the asymp-
totic behaviors for x̄1⊥ → 1 and x̄1⊥ → 0, respectively. We expect that, as it is the
case for AW

� in Fig. 4, they provide good approximations of the actual dependence.
Taking into account that t̄M (δx̄‖ → 0, x̄1⊥ → 0) = [x̄2

1⊥ + (δx̄‖)2]/[2(d + 2)]
(Eq. (119)) and using Eq. (237) one finds

AP
�(δx̄‖ → 0, x̄1⊥ → 0) = Kd

x̄2
1⊥

[x̄2
1⊥ + (δx̄‖)2]d+2

, (249)
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and in particular

AP
�(δx̄‖ = 0, x̄1⊥ → 0) = Kd/x̄2(d+1)

1⊥ . (250)

For d = 3 one has K3 � 0.169773 whereas K4 � 0.148406. For x̄1⊥ → 1 we
consider only the case δx̄‖ = 0. From Eq. (236), one finds

AP
�(δx̄‖ = 0, x̄1⊥ → 1) = ad (1 − x̄1⊥)2, (251)

where (see Eq. (240))

ad ≡ Ld (t̄M (δx̄‖ = 0, x̄1⊥ → 1)). (252)

Taking into account that [see the discussion after Eq. (118)] t̄M (δx̄‖ = 0, x̄1⊥ →
1) = (4 − √

11)/10 � 0.0683375 for d = 3 and t̄M (δx̄‖ = 0, x̄1⊥ → 1) =
(9 − √

57)/20 � 0.0604236 for d = 4, one has a3 = L3(t̄M (δx̄‖ = 0, x̄1⊥ →
1)) � 17.927 and a4 = L4(t̄M (δx̄‖ = 0, x̄1⊥ → 1)) � 19.416.

Let us discuss the behavior of AP
�(δx̄‖, x̄1⊥) for large |δx̄‖| and 0 < x̄1⊥ < 1

fixed. According to Eq. (116) one has, in leading order, t̄M (δx̄‖ → ∞, x̄1⊥) =
|δx̄‖|/(2π ) − (d − 1)/(4π2) + O(1/|δx̄‖|) and therefore one can use in Eq. (248)
the asymptotic behavior of �(0,1) reported in Eq. (115), finding

AP
�(δx̄‖ → ∞, x̄1⊥) = 2π2 e−2π |δx̄‖|

(2|δx̄‖|)d−1
sin2(π x̄1⊥). (253)

For |δx̄‖|, x̄1⊥ → 0 one obtains from Eq. (249)

AP
�(δx̄‖, x̄1⊥)

AP
�(δx̄‖ = 0, x̄1⊥)

= 1[
1 + (δx̄‖)2/x̄2

1⊥
]d+2

, (254)

which indeed provides a very good approximation of the actual curves already for
|δx̄‖|, x̄1⊥ <∼ 0.5 (see Fig. 8).

APPENDIX G: EXPANSION OF THE IN-PLANE

CORRELATION FUNCTION

In Subsec. 4.4 we discuss the mean-field expression for the correlation
function for points located within a plane parallel to the confining walls, i.e.,
C (0)(p, x⊥, x⊥, ω), with the corresponding scaling function given in Eq. (127).
This expression depends actually on two variables: ā ≡ aL and x̄⊥ ≡ x⊥/L
(0 ≤ x̄⊥ ≤ 1). In order to discuss the behavior of Eq. (127) for |ā| � 1 (so that
|ā(1 − 2x̄⊥)| � 1), we write

cosh ā − cosh ā(1 − 2x̄⊥)

ā sinh ā
=

∞∑
n=0

Pn(x̄⊥)ā2n (255)
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where Pn is a polynomial of degree 2n + 2, has the symmetry Pn(x̄⊥) = Pn(1 −
x̄⊥), and Pn(0) = 0. From the series expansion of the l.h.s. of Eq. (255) one easily
finds that

P0(x) = 2x(1 − x), (256)

P1(x) = −2

3
x2(1 − x)2, (257)

P2(x) = 2

45
x2(1 − x)2(1 + 2x − 2x2) (258)

P3(x) = − 4

945
x2(1 − x)2

(
1 + 2x − x2

2
− 3x3 + 3

2
x4

)
. (259)

Taking into account that ā2 ≡ p̄2 + L̄2 − iω̄ (see Eq. (97)), one finds that

Im
cosh ā − cosh ā(1 − 2x̄⊥)

ā sinh ā

=
∞∑

n=1

Pn(x̄⊥)
2k+1≤n∑

k=0

(−1)k+1

(
n

2k + 1

) (
p̄2 + L̄2

)n−(2k+1)
ω̄2k+1,

(260)

and thus

C(0)(p̄, x̄⊥, x̄⊥, ω̄, L̄)

= 2
∞∑

n=1

Pn(x⊥/L)
2k+1≤n∑

k=0

(−1)k+1

(
n

2k + 1

) (
p̄2 + L̄2

)n−(2k+1)
ω̄2k .

(261)
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